1. (30 pts) (a) Find the strictly decreasing function $f: \underline{4} \rightarrow \underline{20}$ of rank 50 .
(b) Determine the lex order rank of the strictly decreasing function $7,4,2,1$. Show your work.
2. (15 pts) Find the 6-leaf binary (unlabeled rooted plane) tree whose rank is 20 . Show your work.
3. (55 pts) Define a web recursively to be either
(i) The simple graph with

$$
V=\underline{3}=\{1,2,3\} \text { and } E=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

(a "triangle") or
(ii) A simple graph with $V=\underline{n}$ for some $n>3$ such that vertex n has degree 2 and removing n and the two edges joining it gives a web with $n-1$ vertices.
Do the following.
(a) Draw the 3 webs that have 4 vertices.
(b) Prove that a web is not a tree.
(c) Let w_{n} be the number of webs with vertex set \underline{n}. Write down a recursion for w_{n} and explain how you got it.
(d) Prove that, for $n \geq 3$ the number of webs with vertex set \underline{n} is $\frac{(n-1)!(n-2)!}{2^{n-2}}$.

Here are some values of b_{n} and binomial coefficients.

$$
\begin{aligned}
& b_{1}=1 \quad b_{2}=1 \quad b_{3}=2 \quad b_{4}=5 \quad b_{5}=14 \quad b_{6}=42 . \\
& \binom{6}{4}=15 \quad\binom{7}{4}=35 \quad\binom{8}{4}=91 \quad\binom{5}{3}=10 \quad\binom{6}{3}=20 \quad\binom{7}{3}=35 \quad\binom{8}{3}=56 \\
& \binom{4}{2}=6 \quad\binom{5}{2}=10 \quad\binom{6}{2}=15 \quad\binom{7}{2}=21 \quad\binom{8}{2}=28 \quad\binom{9}{2}=36 \quad\binom{10}{2}=45
\end{aligned}
$$

