1. The rank formula is $\sum_{i=1}^{k}\binom{f(i)-1}{k-i+1}$ with $k=4$. In other words,

$$
\binom{f(1)-1}{4}+\binom{f(2)-1}{3}+\binom{f(3)-1}{2}+\binom{f(4)-1}{1}
$$

(a) Since $\binom{7}{4}=35 \leq 50<\binom{8}{4}, f(1)=8$ and we need a function on $\underline{3}$ of rank 15 . Since $\binom{5}{3}=10 \leq 15<\binom{6}{3}, f(2)=6$ and we need a function on $\underline{2}$ of rank 5 . Since $\binom{3}{2}=3 \leq 5<\binom{4}{2}, f(3)=4$ and we need a function on $\underline{1}$ of rank 2 . Thus $f(4)=3$ and the function is $8,6,4,3$.
(b) Using the formula for $7,4,2,1$ gives $\binom{6}{4}+\binom{3}{3}+\binom{1}{2}+\binom{0}{1}=16$.
2. We have $20=b_{1} b_{5}+b_{2} b_{4}+b_{3} \times 0+1$. Thus the left tree has 3 vertices and rank 0 while the right has 3 vertices and rank 1 . Since there are only two 3 -vertex binary trees, we easily obtain the answer.
3. (a) They are obtained by starting with a triangle on the vertices $1,2,3$ and then joining vertex 4 to exactly two of $1,2,3$. In other words add one of the following three sets to E :

$$
\{\{1,4\},\{2,4\}\} \quad\{\{1,4\},\{3,4\}\} \quad\{\{2,4\},\{3,4\}\}
$$

(b) Every web is built from the triangle, which contains a cycle. Since a tree does not contain a cycle, a web cannot be a tree.
Alternate proof: Every tree (except the single point) contains vertices of degree 1 , but every vertex in a web has degree at least 2 .
(c) We have $w_{3}=1$ by (i) and, for $n>3, w_{n}=\binom{n-1}{2} w_{n-1}$ because we can choose a web on $n-1$ vertices AND choose two vertices to connect to vertex n in $\binom{n-1}{2}$ ways.
(d) We use induction. The case $n=3$ is simple to check. For $n>3$,

$$
\begin{aligned}
w_{n} & =\binom{n-1}{2} w_{n-1} \\
& =\frac{(n-1)(n-2)}{2} \frac{(n-1-1)!(n-2-2)!}{2^{n-1-2}} \quad \text { by }(\mathrm{c}) \\
& =\frac{(n-1)!(n-2)!}{2^{n-2}}
\end{aligned}
$$

