Name \qquad ID No. \qquad

1. (30 pts.) Indicate whether true or false. Beware of guessing: correct answer +5 pts. incorrect answer -3 pts. no answer 0 pts
(a) $\quad(\ln n)^{2} \in \Theta(n)$.
(b) $\quad n \ln n \in o\left(n^{1.2}\right)$.
(c) $\quad n^{1.2} \in o(n \ln n)$.
(d) ___ If $f(n) \in \Theta(g(n))$, then $g(n) \in \Theta(f(n))$.
(e) ___ If $f_{1}(n) \in O(g(n))$ and $f_{2}(n) \in O(g(n))$, then $\left(f_{1}(n)+f_{2}(n)\right) \in O(g(n))$.
(f) __ Let $W_{M}(n)$ and $W_{Q}(n)$ be the worst case times for mergesort and quicksort, respectively. True or false: $W_{M}(n) \in o\left(W_{Q}(n)\right)$.
2. (25 pts.$)$ Consider the following eight complexity categories (remember $\lg =\log _{2}$):
$\Theta\left(2^{\ln n}\right) \quad \Theta\left(2^{\lg n}\right) \quad \Theta(n \lg (\lg n)) \quad \Theta(n \lg n) \quad \Theta(n(1+\lg n)) \quad \Theta(n!) \quad \Theta\left(2^{n}\right) \quad \Theta(n)$
(a) Which are equal? (There may be more than one pair.) Give a reason for any equalities.
(b) Arrange the distinct categories in order from slowest growing to fastest growing. In other words, if $\Theta(f(n))$ is to the left of $\Theta(g(n))$, then $f(n) \in o(g(n))$.
3. (20 pts.) It is known that $T(1)=0$ and that $T(n+1)=7 T(n)+12$ for $n>0$. Prove that $T(n)=2\left(7^{n-1}-1\right)$.
4. (25 pts.) In the following algorithm, \cdots stands for some simple calculations that take constant time.
```
procedure(n)
            for }k\mathrm{ from 1 to }n\mathrm{ do
            ... /* produces a number j */
            if k divides j, then mergesort an n-long list
            ...
        end for loop
end
```

Note: Think of j as a random integer, so the probability that " k divides j " is $1 / k$.
(a) Suppose the sorting were free (which it is not). What is the complexity class for the average running time of this algorithm. You MUST give a reason for your answer. (The class should be of the form $\Theta(f(n))$ where $f(n)$ is a simple function.)
(b) Suppose that the basic operation is a comparison in mergesort. What is the complexity class for the average running time of this algorithm. (You may give your answer in the form $\Theta\left(\sum f(k)\right)$ where $f(k)$ is a simple function and the sum runs from 1 to n.) You MUST give a reason for your answer.
(c) Use (a) and (b) to find the complexity class for the average running time of this algorithm. You MUST give a reason for your answer.

