
Math 188 Solutions 26 April 2000

1. (30 pts.) Indicate whether true or false.
ANS. Solution to (a-c) uses the fact that lnn ∈ o(na) for all a > 0.
(a) F (lnn)2 ∈ Θ(n). [Take a ≤ 1/2 in the fact and square.]
(b) T n lnn ∈ o(n1.2). [Take a ≤ 0.2 in the fact and multiply by n.]
(c) F n1.2 ∈ o(n lnn).
(d) T If f(n) ∈ Θ(g(n)), then g(n) ∈ Θ(f(n)).
(e) T If f1(n) ∈ O(g(n)) and f2(n) ∈ O(g(n)), then (f1(n) + f2(n)) ∈ O(g(n)).
(f) T Let WM (n) and WQ(n) be the worst case times for mergesort and quick-

sort, respectively. True or false: WM (n) ∈ o(WQ(n)). [WM (n) ∈ Θ(n lnn) and
WQ(n) ∈ Θ(n2)]

2. (25 pts.) Consider the following eight complexity categories (remember lg = log2):

Θ(2ln n) Θ(2lg n) Θ(n lg(lg n)) Θ(n lg n) Θ(n(1+lg n)) Θ(n!) Θ(2n) Θ(n)

(a) Which are equal? (There may be more than one pair.) Give a reason for any
equalities.
ANS. Θ(2lg n) = Θ(n) since 2lg n = n and Θ(n(1 + lg n)) = Θ(n lg n) since

lim
n→∞

n(1 + lg n)
n lg n

= 1.

(b) Arrange the distinct categories in order from slowest growing to fastest growing.
In other words, if Θ(f(n)) is to the left of Θ(g(n)), then f(n) ∈ o(g(n)).
ANS. We use 2ln n = 2(lg n) ln 2 = nln 2. Also, ln 2 < 1 since e > 2.

Θ(2ln n) Θ(n) Θ(n lg(lg n)) Θ(n lg n) Θ(2n) Θ(n!)

3. (20 pts.) It is known that T (1) = 0 and that T (n + 1) = 7T (n) + 12 for n > 0. Prove
that T (n) = 2(7n−1 − 1).
PROOF. For n = 1, the formula gives T (1) = 2(71−1 − 1) = 0, proving the base case.

Suppose the result is true for n, Then, using the recursion and then the formula
for n, we have

T (n + 1) = 7T (n) + 12

= 7
(
2(7n−1 − 1)

)
+ 12.

After some algebra, this becomes T (n+1) = 2(7n−1) = 2(7(n+1)−1−1), which proves
the formula for n + 1. This completes the induction step.

1



Math 188 Solutions 26 April 2000

4. (25 pts.) In the following algorithm, · · · stands for some simple calculations that take
constant time.

procedure(n)
for k from 1 to n do

· · · /* produces a number j */
if k divides j, then mergesort an n-long list
· · ·

end for loop
· · ·

end
Note: Think of j as a random integer, so the probability that “k divides j” is 1/k.

(a) Suppose the sorting were free (which it is not). What is the complexity class for
the average running time of this algorithm. You MUST give a reason for
your answer. (The class should be of the form Θ(f(n)) where f(n) is a simple
function.)
ANS. If the sorting were free, the loop is executed n times and so the running
time is Θ(n).

(b) Suppose that the basic operation is a comparison in mergesort. What is the
complexity class for the average running time of this algorithm. (You may give
your answer in the form Θ(

∑
f(k)) where f(k) is a simple function and the sum

runs from 1 to n.) You MUST give a reason for your answer.
ANS. The probability that the mergesort is executed is 1/k for each value of k.
Since the average number of comparisons for mergesort is Θ(n log n), the average
running time is

n∑
k=1

(1/k)Θ(n log n) = Θ
( n∑

k=1

(1/k)n log n

)
= Θ

(
n log n

n∑
k=1

1/k

)
.

Any of these forms is okay. Also, if you happen to know that
∑n

k=1 1/k =
Θ(log n), you could also have the answer Θ(n(log n)2). In all cases, the base of
the logarithm does not change the complexity class, so it can be any base.

(c) Use (a) and (b) to find the complexity class for the average running time of this
algorithm. You MUST give a reason for your answer.
ANS. The running time is the time to do the work without counting mergesort
plus the time to do mergesort. Hence the answer is the sum of the answers to (a)
and (b). You get credit for stating this, even if your answers to (a) and (b) are
incorrect.

By comparing the complexity class for (a) and (b), you can see that the
answer to (b) grows faster, so the complexity class for (c) is the same as that
for (b).

2


