Math 188 Final SOLUTIONS June 14, 2000 page 1

Name

ID No.

There are 200 points possible.

1. (30 pts) Suppose you have a computer that requires, on average, one second to solve problem
instances of size n = 100. Assuming memory and storage are not a problem, how long would
it take, on average, to solve a problem ten times as large (n = 1,000) in each of the following
situations? (Recall that A(n) is the average-case time for a problem of size n.)

(a)
Ans.

(b)
Ans.

(c)
Ans.

A(n) = Cn for some constant C.
C = A(100)/100 and A(1,000) = 1,000C = 10 A(100) = 10 seconds.

A(n) = Cn? for some constant C.
C = A(100)/(100)% and A(1,000) = C(1,000)2 = 100 A(100) = 100 seconds.

A(n) = C'2" for some constant C.

C = A(100)/2109 = 27190 and A(1,000) = 2719021000 geconds. This is 2990 ~ 10270
seconds. For comparison, the age of the universe is estimated to be around 10'® seconds.

2. (30 pts) We have two algorithms for a problem.

e The average run time for Algorithm A is much better than the average run
time for Algorithm B.

e The worst-case run time for Algorithm A is much worse than the worst-case
run time for Algorithm B.

e The two algorithms require the same amount of storage and are equally difficult
to program correctly.

The following examples should be rather specific, as in
names according to GPAs” but not “sorting a list.”

“reordering student

(a)

Ans.

Ans.

Give an example of a situation where Algorithm A should be used rather than
Algorithm B. Explain BRIEFLY why it should be used.

Any situation in which the algorithm is run over and over on problems that appear to be
random, and all that matters is the total running time. You could come up with many
situations. One example is sorting students in classes according to their grades to produce
rankings for all classes. Average time matters since that will give us a good estimate for
how much computer time will be required.

Give an example of a situation where Algorithm B should be used rather than
Algorithm A. Explain BRIEFLY why it should be used.

Any situation where it is critical to get the answer within a certain time every time
the algorithm is run. Again, you could come up with many situations. One example is
controlling a robot that is moving in a dangerous environment. (It must avoid walking off
a cliff, falling, etc.) Average time doesn’t matter since one decision that takes too long
could result in disaster for the robot.

1 MORE 1

Math 188 Final SOLUTIONS June 14, 2000 page 2

3. (30 pts.) I have found two divide and conquer algorithms for a problem I want to solve. I tell
you that all running times increase with n, the problem size, and also:
e the average time for Algorithm 1 satisfies A;(n) = 241(n/2) + 3n when n is a power of 2

Ans.

and
the worst time for Algorithm 2 satisfies Wa(n) = 5W5(n/3) + n when n is a power of 3.

Determine the complexity categories of A; and Whs.

. Using Theorem B.6 we have

Ai(n) € O(nlgn) with a =2, b=2, k=1;
Wa(n) € ©(n'°83°) with a=5, b=3, k=1.

I ask you which algorithm is better for large problems. What is your answer? Why?

. Since logz 5 > 1, nlgn € o(n'°835) and so, by (a) the average-case time for Algorithm 1 is

much better than the worst-case time for Algorithm 2. This is not enough information to
decide; for example, the average-case time for Algorithm 2 may be much less than A;(n).

A few minutes later, I return and apologize because I gave you the wrong equations.
I had reversed average case and worst case. The correct recursions are

Wi(n) = 2Wi(n/2) 4+ 3n and Asz(n) =5A45(n/3) + n.

What is your answer to (b) now? Why?

These are the same equations except worst and average have been interchanged. Now
the average-case time for Algorithm 2 is worse than the worst-case time for Algorithm 1.
Thus Algorithm 1 is better regardless of whether we are interested in worst or average
times.

4. (20 pts.) Complete the following sentences with a word or brief phrase.

(a)

Ans.

Ans.

If it is possible to design a divide and conquer algorithm for a problem, ONE important
factor in whether or not the running time will grow at a reasonable rate as the problem
size grows is

(1) the number of subproblems one problem is divided into; (2) the size of the subproblems;
(3) how much time is required to combine the subproblem results to solve the original
problem

Suppose it is possible to design a backtracking algorithm for a problem. There are usu-
ally various choices to be made when setting up the algorithm. ONE choice that can
significantly affect the running time is

(1) the order in which things are considered (e.g., order of objects in the 0-1 knapsack
problem); (2) the order in which decisions are made about each thing (e.g., include before
leave out in the 0-1 knapsack problem); (3) what is taken into account in the promis-
ing() function.

2 MORE 2

Math 188 Final SOLUTIONS June 14, 2000 page 3

5. (30 pts) Consider the following algorithm:

TRANS(lo, hi) {

if (1 == hi-lo) return;

mid = (hi+lo)/2;

TRANS(lo, mid);

TRANS (mid, hi);

for (i=lo; i<mid; i=i+1) {
t = w[i] + w(li+mid];
wli+mid] = wl[i] - w[i+mid];
wli] = t;

}

The algorithm is used when n is a power of 2. One invokes the algorithm by TRANS(O,n). It
uses an n-long external array of numbers w. Assume that executing one step of the for loop
is a basic operation.

(a) What algorithm category(e.g., backtracking) does it belong in and why?

Ans. Divide and conquer because either (a) it is top down or (b) it divides the problem into
smaller problems of the same time and combines results.

(b) Using induction on m prove that the number of basic operations in TRANS(0,m) is the
same as the number in TRANS(j,m+j) for all j. (You may assume that m is a power of 2.)

Ans. Since TRANS(j,j+1) takes zero basic operations for all j, this does m = 0.
Now for induction. Suppose m > 0. We have mid =(j+m+j)/2 = j+m/2.
e First the recursive part of the code: By induction, TRANS(j, j+m/2) and TRANS(0,m/2)
require the same number of basic operations. By similar reasoning, so do TRANS (j+m/2, j+m)
and TRANS(0,m/2), and also TRANS(m/2,m) and TRANS(O,m/2). Thus so do TRANS(j+m/2, j+m)
and TRANS(m/2,m).
e Now the nonrecursive part of the code: In TRANS(0,m) and TRANS(j,m+j) the for loop
is executed m times.
e Combining these observations, we see that the number of basic operations is the same.

(c) Write a recursion for the every-case time complexity of the algorithm. Do NOT solve the
TECUTSILON.
HINT: Use the result from (b). You can do this even if you have not done (b).

Ans. Let T'(n) be the number of basic operations when n is a power of 2. We have T'(n) =
2T (n/2) +n/2.

3 MORE 3

Math 188 Final SOLUTIONS June 14, 2000 page 4
6. (60 pts.) Indicate whether true or false. Beware of guessing:

correct answer +4pts. incorrect answer —2pts. no answer Opts

) T If f(n) € ©(g(n)), then g(n) € O(f(n)).
) FIf f(n) € o(g(n)), then g(n) € o(f(n)).
) T 1If f(n) € o(g(n)), then g(n) & o(f(n)).
(d) F If f(n) € O(g(n)), then g(n) Z O(f(n)).
) F Divide and conquer algorithms use a bottom up approach.
)

T If a divide an conquer algorithm requires recomputing the same quantity many times,
it is a good idea to look for a dynamic programming algorithm.

(g) T Quicksort has a good average run time and a poor worst-case run time.

(h) F Although it requires more complicated data structures, Prim’s algorithm for a minimum
spanning tree is better than Kruskal’s when the graph has a large number of vertices.

(i) T Monte Carlo algorithms can be used to estimate the run times for some backtracking
programs.

(j) F The complexity category of a backtracking program such as n-queens can be determined
by a Monte Carlo algorithm.

(k) F If you can devise a simple backtracking algorithm for a problem, you should use it
since no other algorithm is likely to be faster.

() T It is impossible to design a sorting algorithm based on comparison of keys whose
worst-case run time is in ©(n).

(m) T It is impossible to design a search algorithm based on comparison of keys of items in
a sorted list such that the worst-case run time requires at most log;,n comparisons for
large n.

(n) F For most problems, it is fairly easy to obtain lower bounds for run-time complexity
that are close to the times of the best known algorithms for the problems.

(o) T For many problems, the best known algorithms require keeping track of data that was
not asked for in the problem.

4 END 4

