
Math 188 Calculator and One Page of Notes Allowed 21 May 1999

SOLUTIONS TO THE EXAM

There are 115 points total (So first exam is about 20% and this is about 25%.)

1. (25 pts.) Recall that Prim’s algorithm finds a minimum spanning tree by greedily
growing a tree starting with v1, whereas Kruskal’s algorithm greedily adds edges in a
way that avoids cycles. For the graph shown below, list the edges in the order they
are chosen by each algorithm. Edges are labeled with upper case letters. (Two
copies of the graph are provided so you can use them as “worksheets” if you wish to.)

(a) Prim’s algorithm: A K E R M L F B J

(b) Kruskal’s algorithm: M F A R E L K B J

• • • •

• • • •

• •
v1

A B

C D E F

H

J K L

M R S

3 9

25

8

41

6

7

10

11

12

13

• • • •

• • • •

• •
v1

A B

C D E F

H

J K L

M R S

3 9

25

8

41

6

7

10

11

12

13

2. (25 pts.) The worst-case running time for an algorithm is an increasing function of n
and satisfies T (n) = 3T (n/2) + 2n when n is a power of two. Furthermore, T (1) = 1.
Determine the complexity class of T (n).

Ans. Apply Theorem B.5 on page 492 (or Theorem B.6): a = 3, b = 2, c = 2, and k = 1.
Hence a > bk = 2 and so T (n) ∈ Θ(nlog2 3) = Θ(nlg 3).

MORE



Math 188 Calculator and One Page of Notes Allowed 21 May 1999

3. (25 pts.) Problem 3.33 says “...write an algorithm to find the maximum sum in any
contiguous sublist of a given list of n real numbers. Analyze your algorithm, and show
the results using order notation.” We present an algorithm below. Analyze it. You
should give both average-case and worst-case complexity information.

MaxSum(list, n)
best = 0 // Best sum so far
right = 0 // Best sum ending on the end right of 1 · · · i
For i = 1 to n // i is the right end

right = right + list[i] // Extend sum to the right
If (right > best) best = right
If (right < 0) right = 0 // Empty sum is better

End for
End

Ans. The basic operation can be anything inside the loop, including the incrementing of i
required for the loop. Since the loop is executed n times, the every-case time com-
plexity is Θ(n). Since this is every-case, it is also average-case and worst-case.

4. (40 pts.) Indicate whether true or false. Beware of guessing:

correct answer +5pts. incorrect answer −3pts. no answer 0pts

(a) F Greedy algorithms are called “greedy” because they often require a lot of
storage.

(b) F Dynamic programming algorithms usually split the problem into a few smaller
problems, which are solved by recursive calls.

(c) F Usually it is easier to prove that a greedy algorithm is correct than it is to
prove that a dynamic programming algorithm is correct.

(d) F If we find a good dynamic programming algorithm for a problem, there will
probably not be a good greedy algorithm.

(e) T The “principle of optimality” is a good method for proving that a dynamic
programming algorithm is correct.

(f) T A dynamic programming approach is better than a divide and conquer ap-
proach for solving a recursion such as S(n, k) = S(n−1, k)+(k−1)S(n−1, k−1).
(If k = 1 or n = k, then S(n, k) = 1.)

(g) T Kruskal’s algorithm is better than Prim’s when the graph has relatively few
edges.

(h) F A greedy algorithm for the 0-1 Knapsack Problem is at least as good as a
dynamic programming algorithm.

END


