
Math 188 Calculator and One Page of Notes Allowed Final 6/8/99 page 1

Name ID No.

There are 210 points possible.

1. (30 pts.) Recall that Dijkstra’s algorithm finds shortest paths from v1 to all other
vertices by adding edges linking in the closest points. In the graph shown below, each
edge is bidirectional; that is, you can travel in either direction on it. Edges are
labeled with upper case letters. (Two copies of the graph are provided so you
can use one as a “worksheet” if you wish.)

(a) List edges in order chosen by algorithm:

(b) At each vertex, give the length of the shortest path from v1 to the vertex. Indicate
which graph has your answer.

• • • •

• • • •

• •
v1

A B

C D E F

H

J K L

M R S

3 1

17

6

32

3

2

7

2

7

4

• • • •

• • • •

• •
v1

A B

C D E F

H

J K L

M R S

3 1

17

6

32

3

2

7

2

7

4

2. (25 pts.) Consider the following eight complexity categories (remember lg = log2):

Θ(n) Θ(n2) Θ(2n) Θ(3lg n) Θ(nlg n) Θ(n lg n) Θ((
√

n + lnn)2) Θ(2n+lg n).

(a) Which are equal?

(b) Arrange the distinct classes in order from slowest growing to fastest growing. In
other words, if Θ(f(n)) is to the left of Θ(g(n)), then f(n) ∈ o(g(n)).

1 MORE 1



Math 188 Calculator and One Page of Notes Allowed Final 6/8/99 page 2

3. (30 pts.) The average running time for an algorithm is a nondecreasing function of
n and satisifies T (4n) = T (2n) + 2T (n) for all n > 0. Furthermore, T (1) = 1 and
T (2) = 3.
(a) Determine T (2k) as a function of the integer k.

Hint: Set tk = T (2k).

(b) Determine the complexity class of T (n).

4. (30 pts.) Suppose we have two sorted lists a1, . . . , an and b1, . . . , bn, both of length n,
that we want to merge to obtain a sorted list of length 2n, say c1, . . . , c2n. To do this,
we must decide where the ai’s fit among the bj ’s to produce the c list. The number
of choices for this is

(
2n
n

) ≥ 4n/(2n1/2).
Suppose the merge is done comparisons of keys. Using the above information,

derive a lower bound for the worst case number of key comparisons that are needed.
Explain your reasoning; don’t just give an answer.

2 MORE 2



Math 188 Calculator and One Page of Notes Allowed Final 6/8/99 page 3

5. (30 pts.) Here is an informal description of a routine Proc that is looking for x in a
sorted list S. The parameters are the ends of the list. While it is looking it does some
processing in ProcLow and ProcHigh.

Proc(lo,hi)
If lo > hi we are done.
k = b(lo + hi)/2c.
If S[k] = x, we are done.
If S[k] < x

Call ProcHigh(k,hi) and Proc(k + 1,hi)
Else

Call ProcLow(lo,k) and Proc(lo,k − 1)
Endif.

End

We begin by calling Proc(1,n). Most of the time is spent in ProcLow and ProcHigh.
In fact, ProcLow(a,b) requires lg(b − a + 1) basic operations and ProcHigh(a,b)
requires (b− a+1) basic operations. (You do not need to know what any of this code
is supposed to do.)
(a) Let W (n) be the worst case running time for Proc(1,n). Give a recursion and

initial condition for W (2n). (In the worst case, x is not in the list.)

(b) Let A(n) be the average running time for Proc(1, n). Assuming x is not in the
list and the probability that S[k] < x is 1/2, give a recursion for A(n). You need
not give an initial condition.

3 MORE 3



Math 188 Calculator and One Page of Notes Allowed Final 6/8/99 page 4

6. (65 pts.) Indicate whether true or false. Beware of guessing:

correct answer +5pts. incorrect answer −3pts. no answer 0pts

Θ(2n+2) = Θ(2n).

Θ((n + 2)2) = Θ(n2).

Θ(2n+lg n) = Θ(2n).

Θ((n + lg n)2) = Θ(n2).

Greedy algorithms are called “greedy” because they make the best choice at the
present time, without concern for the future.

Dynamic programming algorithms use a bottom up approach.

Divide and conquer algorithms use a bottom up approach.

If a divide an conquer algorithm requires recomputing the same quantity many
times, it is a good idea to look for a dynamic programming algorithm.

No greedy algorithm is known for the 0-1 Knapsack Problem.

It is usually fairly easy to determine average and worst-case time complexities for
backtracking algorithms.

There is a search algorithm that uses comparison of keys and is significantly faster
on average and in the worst case than binary search.

There is a sorting algorithm that uses comparison of keys and is significantly
faster on average than and in the worst case than mergesort.

Quicksort has a good average run time and a poor worst-case run time.

4 END 4


