Name \qquad ID No. \qquad
There are 210 points possible.

1. (30 pts.) Recall that Dijkstra's algorithm finds shortest paths from v_{1} to all other vertices by adding edges linking in the closest points. In the graph shown below, each edge is bidirectional; that is, you can travel in either direction on it. Edges are labeled with upper case letters. (Two copies of the graph are provided so you can use one as a "worksheet" if you wish.)
(a) List edges in order chosen by algorithm: \qquad
(b) At each vertex, give the length of the shortest path from v_{1} to the vertex. Indicate which graph has your answer.

2. (25 pts.) Consider the following eight complexity categories (remember $\lg =\log _{2}$):
$\Theta(n) \quad \Theta\left(n^{2}\right) \quad \Theta\left(2^{n}\right) \quad \Theta\left(3^{\lg n}\right) \quad \Theta\left(n^{\lg n}\right) \quad \Theta(n \lg n) \quad \Theta\left((\sqrt{n}+\ln n)^{2}\right) \quad \Theta\left(2^{n+\lg n}\right)$.
(a) Which are equal?
(b) Arrange the distinct classes in order from slowest growing to fastest growing. In other words, if $\Theta(f(n))$ is to the left of $\Theta(g(n))$, then $f(n) \in o(g(n))$.
3. (30 pts.) The average running time for an algorithm is a nondecreasing function of n and satisifies $T(4 n)=T(2 n)+2 T(n)$ for all $n>0$. Furthermore, $T(1)=1$ and $T(2)=3$.
(a) Determine $T\left(2^{k}\right)$ as a function of the integer k.

Hint: Set $t_{k}=T\left(2^{k}\right)$.
(b) Determine the complexity class of $T(n)$.
4. (30 pts.) Suppose we have two sorted lists a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, both of length n, that we want to merge to obtain a sorted list of length $2 n$, say $c_{1}, \ldots, c_{2 n}$. To do this, we must decide where the a_{i} 's fit among the b_{j} 's to produce the c list. The number of choices for this is $\binom{2 n}{n} \geq 4^{n} /\left(2 n^{1 / 2}\right)$.

Suppose the merge is done comparisons of keys. Using the above information, derive a lower bound for the worst case number of key comparisons that are needed. Explain your reasoning; don't just give an answer.
5. (30 pts.) Here is an informal description of a routine Proc that is looking for x in a sorted list S. The parameters are the ends of the list. While it is looking it does some processing in ProcLow and ProcHigh.

```
Proc(lo,hi)
    If lo>hi we are done.
    k=\(lo+hi)/2\rfloor.
    If S[k]=x, we are done.
    If S[k]<x
        Call ProcHigh(k,hi) and Proc(k+1,hi)
    Else
        Call ProcLow(lo,k) and Proc(lo,k-1)
    Endif.
End
```

We begin by calling Proc $(1, n)$. Most of the time is spent in ProcLow and ProcHigh. In fact, $\operatorname{ProcLow}(a, b)$ requires $\lg (b-a+1)$ basic operations and $\operatorname{ProcHigh}(a, b)$ requires $(b-a+1)$ basic operations. (You do not need to know what any of this code is supposed to do.)
(a) Let $W(n)$ be the worst case running time for $\operatorname{Proc}(1, n)$. Give a recursion and initial condition for $W\left(2^{n}\right)$. (In the worst case, x is not in the list.)
(b) Let $A(n)$ be the average running time for $\operatorname{Proc}(1, n)$. Assuming x is not in the list and the probability that $S[k]<x$ is $1 / 2$, give a recursion for $A(n)$. You need not give an initial condition.
6. (65 pts.) Indicate whether true or false. Beware of guessing:

$$
\text { correct answer }+5 \text { pts. } \quad \text { incorrect answer }-3 \text { pts. no answer 0pts }
$$

$\ldots\left(2^{n+2}\right)=\Theta\left(2^{n}\right)$.
_ $\Theta\left((n+2)^{2}\right)=\Theta\left(n^{2}\right)$.
$\Theta\left(2^{n+\lg n}\right)=\Theta\left(2^{n}\right)$.
_ $\Theta\left((n+\lg n)^{2}\right)=\Theta\left(n^{2}\right)$.
__ Greedy algorithms are called "greedy" because they make the best choice at the present time, without concern for the future.
\qquad Dynamic programming algorithms use a bottom up approach.
\qquad Divide and conquer algorithms use a bottom up approach.
If a divide an conquer algorithm requires recomputing the same quantity many times, it is a good idea to look for a dynamic programming algorithm.

No greedy algorithm is known for the 0-1 Knapsack Problem.
It is usually fairly easy to determine average and worst-case time complexities for backtracking algorithms.

There is a search algorithm that uses comparison of keys and is significantly faster on average and in the worst case than binary search.
\qquad There is a sorting algorithm that uses comparison of keys and is significantly faster on average than and in the worst case than mergesort.

Quicksort has a good average run time and a poor worst-case run time.

