1. (30 pts.) Recall that Dijkstra's algorithm finds shortest paths from v_{1} to all other vertices by adding edges linking in the closest points. In the graph shown below, each edge is bidirectional; that is, you can travel in either direction on it. Edges are labeled with upper case letters. (Two copies of the graph are provided so you can use one as a "worksheet" if you wish.)
(a) List edges in order chosen by algorithm: A J H B C D L F R
(b) At each vertex, give the length of the shortest path from v_{1} to the vertex. Indicate which graph has your answer.

2. (25 pts .) Consider the following eight complexity categories (remember $\lg =\log _{2}$):
$\Theta(n) \quad \Theta\left(n^{2}\right) \quad \Theta\left(2^{n}\right) \quad \Theta\left(3^{\lg n}\right) \quad \Theta\left(n^{\lg n}\right) \quad \Theta(n \lg n) \quad \Theta\left((\sqrt{n}+\ln n)^{2}\right) \quad \Theta\left(2^{n+\lg n}\right)$.
(a) Which are equal?

$$
\Theta(n)=\Theta\left((\sqrt{n}+\ln n)^{2}\right)
$$

(b) Arrange the distinct classes in order from slowest growing to fastest growing. In other words, if $\Theta(f(n))$ is to the left of $\Theta(g(n))$, then $f(n) \in o(g(n))$.

$$
\Theta(n) \quad \Theta(n \lg n) \quad \Theta\left(3^{\lg n}\right) \quad \Theta\left(n^{2}\right) \quad \Theta\left(n^{\lg n}\right) \quad \Theta\left(2^{n}\right) \quad \Theta\left(2^{n+\lg n}\right)
$$

3. (30 pts.) The average running time for an algorithm is a nondecreasing function of n and satisifies $T(4 n)=T(2 n)+2 T(n)$ for all $n>0$. Furthermore, $T(1)=1$ and $T(2)=3$.
(a) Determine $T\left(2^{k}\right)$ as a function of the integer k.

Hint: Set $t_{k}=T\left(2^{k}\right)$.
Ans. By the hint, $t_{k+2}=t_{k+1}+2 t_{k}$, where $t_{0}=1$ and $t_{1}=3$. Since the roots of $x^{2}=x+2$ are $x=-1$ and $x=2$, the general solution to the recursion is

$$
t_{k}=A(-1)^{k}+B 2^{k}
$$

With $k=0$, we have $A+B=1$ and $-A+2 B=3$. Hence $B=4 / 3$ and $A=-1 / 3$. Thus $T\left(2^{k}\right)=\left(2^{k+2}-(-1)^{k}\right) / 3$.
(b) Determine the complexity class of $T(n)$.

Ans. $T(n) \in \Theta(n)$ by Theorem B.4.
4. (30 pts.) Suppose we have two sorted lists a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, both of length n, that we want to merge to obtain a sorted list of length $2 n$, say $c_{1}, \ldots, c_{2 n}$. To do this, we must decide where the a_{i} 's fit among the b_{j} 's to produce the c list. The number of choices for this is $\binom{2 n}{n} \geq 4^{n} /\left(2 n^{1 / 2}\right)$.

Suppose the merge is done comparisons of keys. Using the above information, derive a lower bound for the worst case number of key comparisons that are needed. Explain your reasoning; don't just give an answer.
Ans. Each comparison allows us the split the possibilities into two parts. The decision tree will be binary and must have at least $\binom{2 n}{n}$ leaves. Since the longest from root to leaf in such a tree is at least the log base 2 of the number of leaves, $W(n) \geq\left\lceil\lg \binom{2 n}{n}\right\rceil$. You could leave off the ceiling function. You could also use the lower bound for the binomial coefficient to get

$$
W(n) \geq 2 n-\lg 2-(\lg n) / 2
$$

By the way, this is nearly achieved by the merge process in mergesort: It's worst case number of comparisons is $2 n-1$.
5. (30 pts.) Here is an informal description of a routine Proc that is looking for x in a sorted list S. The parameters are the ends of the list. While it is looking it does some processing in ProcLow and ProcHigh.

```
Proc(lo,hi)
    If lo>hi we are done.
    k=\(lo+hi)/2\rfloor.
    If S[k]=x, we are done.
    If S[k]<x
        Call ProcHigh(k,hi) and Proc(k+1,hi)
    Else
        Call ProcLow(lo,k) and Proc(lo,k-1)
        Endif.
End
```

We begin by calling Proc $(1, n)$. Most of the time is spent in ProcLow and ProcHigh. In fact, $\operatorname{ProcLow}(a, b)$ requires $\lg (b-a+1)$ basic operations and $\operatorname{ProcHigh}(a, b)$ requires $(b-a+1)$ basic operations. (You do not need to know what any of this code is supposed to do.)
(a) Let $W(n)$ be the worst case running time for $\operatorname{Proc}(1, n)$. Give a recursion and initial condition for $W\left(2^{n}\right)$. (In the worst case, x is not in the list.)
Ans. When the length of the list is even, the part above k is exactly half of the list. The part below k is one shorter and also requires less processing time because of the "lg". Hence the worst case will be to always take the right half. Thus $W(n)=W(n / 2)+n / 2$. When $n=2^{k}, W\left(2^{k}\right)=W\left(2^{k-1}\right)+2^{k-1}$.
(b) Let $A(n)$ be the average running time for $\operatorname{Proc}(1, n)$. Assuming x is not in the list and the probability that $S[k]<x$ is $1 / 2$, give a recursion for $A(n)$. You need not give an initial condition.
Ans. When n is even, the reasoning in the previous answer gives

$$
A(n)=\frac{A(n / 2)+n / 2}{2}+\frac{A(n / 2-1)+\lg (n / 2-1)}{2}
$$

When n is odd, similar reasoning gives

$$
A(n)=\frac{A((n-1) / 2)+(n-1) / 2}{2}+\frac{A((n-1) / 2)+\lg ((n-1) / 2)}{2}
$$

There's no need to write this as a single recursion, but you can. One way to do so is

$$
A(n)=\frac{A(\lceil(n-1) / 2\rceil)+\lceil(n-1) / 2\rceil}{2}+\frac{A(\lfloor(n-1) / 2\rfloor)+\lg (\lfloor(n-1) / 2\rfloor)}{2} .
$$

6. (65 pts.) Indicate whether true or false. Beware of guessing:
correct answer +5 pts. incorrect answer -3 pts. no answer 0 pts
$\mathrm{T} \Theta\left(2^{n+2}\right)=\Theta\left(2^{n}\right)$.
$\mathrm{T} \Theta\left((n+2)^{2}\right)=\Theta\left(n^{2}\right)$.
F $\Theta\left(2^{n+\lg n}\right)=\Theta\left(2^{n}\right)$.
T $\Theta\left((n+\lg n)^{2}\right)=\Theta\left(n^{2}\right)$.
T Greedy algorithms are called "greedy" because they make the best choice at the present time, without concern for the future.

T Dynamic programming algorithms use a bottom up approach.
F Divide and conquer algorithms use a bottom up approach.
T If a divide an conquer algorithm requires recomputing the same quantity many times, it is a good idea to look for a dynamic programming algorithm.

T No greedy algorithm is known for the 0-1 Knapsack Problem.
F It is usually fairly easy to determine average and worst-case time complexities for backtracking algorithms.

F There is a search algorithm that uses comparison of keys and is significantly faster on average and in the worst case than binary search.

F There is a sorting algorithm that uses comparison of keys and is significantly faster on average and in the worst case than mergesort.

T Quicksort has a good average run time and a poor worst-case run time.

