I've noted if the problem or a near miss is in the text.

1. (10 pts.) Evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ by interpreting it as an area.
A. (p.383, Ex.4) Squaring and rearranging $y=\sqrt{4-x^{2}}$ gives $x^{2}+y^{2}=4$, a circle of radius 2 centered at the origin. The integral is the area in the first quadrant and so equals $\left(\pi 2^{2}\right) / 4=\pi$.

Since the problem did not ask for an exact answer, you will receive credit for a reasonable numerical evaluation.
2. (30 pts.) Evaluate the following integrals using the tools discussed in the text.

$$
\int(1-x) \sqrt{2 x-x^{2}} d x \quad \int_{0}^{2}|\sin \pi x| d x
$$

A. (p.426, \#26, \#39) The substitution $u=2 x-x^{2}$ converts the first to $\int \frac{1}{2} u^{1 / 2} d u=$ $u^{3 / 2} / 3+C$ and so the answer is $\left(2 x-x^{2}\right)^{3 / 2} / 3+C$.

The second integral equals $\int_{0}^{1} \sin \pi x d x-\int_{1}^{2} \sin \pi x d x$. The substitution $u=\pi x$ gives $\int \sin \pi x d x=(-\cos \pi x) / \pi+C$. Thus the answer is
$(-\cos \pi+\cos 0) / \pi-(-\cos \pi+\cos 2 \pi) / \pi=4 / \pi$.
3. (30 pts.) Differentiate the functions

$$
F(x)=\int_{1}^{x} \sqrt{1+u^{4}} d u \quad G(x)=\int_{x^{2}}^{1} \ln \left(1-t^{3}\right) d t
$$

A. Both rely on the Fundamental Theorem of Calculus.

We have $F^{\prime}(x)=\sqrt{1+x^{4}}$.
We have $G(x)=-\int_{1}^{x^{2}} \ln \left(1-t^{3}\right) d t$ and $d G / x d=\left(d G / d x^{2}\right)\left(d\left(x^{2}\right) / d x\right)$. Thus $G^{\prime}(x)=-\ln \left(1-\left(x^{2}\right)^{3}\right) d\left(x^{2}\right) / d x=-2 x \ln \left(1-x^{6}\right)$.
4. (30 pts.) Express the following as integrals. DO NOT EVALUATE the integrals. Sketches may be useful in obtaining partial credit if you make a mistake.
(a) The area bounded by the 3 curves

$$
y=\sin (\pi x), \quad y=x^{2}-x \quad \text { and } \quad x=2
$$

A. (p.428, \#26) The first two curves intersect at $x=1$ and the $\sin (\pi x)$ lies below $x^{2}-x$ for $1<x<2$. Thus the answer is $\int_{1}^{2}\left(x^{2}-x-\sin (\pi x)\right) d x$.
(b) (p. 448 \#9) The volume of the solid obtained by rotating the region bounded by the curves $y^{2}=x$ and $x=2 y$ about the y-axis.
A. The curves intersect at the points $(0,0)$ and $(4,2)$. The answer is $\int_{0}^{2} \pi\left((2 y)^{2}-\left(y^{2}\right)^{2}\right) d y$.

