I've noted if the problem or a near miss is in the text.

- 1. (10 pts.) Evaluate $\int_0^2 \sqrt{4-x^2} \, dx$ by interpreting it as an area.
- A. (p.383, Ex.4) Squaring and rearranging $y = \sqrt{4 x^2}$ gives $x^2 + y^2 = 4$, a circle of radius 2 centered at the origin. The integral is the area in the first quadrant and so equals $(\pi 2^2)/4 = \pi$.

Since the problem did not ask for an exact answer, you will receive credit for a reasonable numerical evaluation.

2. (30 pts.) Evaluate the following integrals using the tools discussed in the text.

$$\int (1-x)\sqrt{2x-x^2} \, dx \qquad \qquad \int_0^2 |\sin \pi x| \, dx.$$

A. (p.426, #26, #39) The substitution $u = 2x - x^2$ converts the first to $\int \frac{1}{2}u^{1/2} du = u^{3/2}/3 + C$ and so the answer is $(2x - x^2)^{3/2}/3 + C$. The second integral equals $\int_0^1 \sin \pi x \, dx - \int_1^2 \sin \pi x \, dx$. The substitution $u = \pi x$

The second integral equals $\int_0^1 \sin \pi x \, dx - \int_1^2 \sin \pi x \, dx$. The substitution $u = \pi x$ gives $\int \sin \pi x \, dx = (-\cos \pi x)/\pi + C$. Thus the answer is $(-\cos \pi + \cos 0)/\pi - (-\cos \pi + \cos 2\pi)/\pi = 4/\pi$.

3. (30 pts.) Differentiate the functions

$$F(x) = \int_{1}^{x} \sqrt{1 + u^{4}} \, du \qquad \qquad G(x) = \int_{x^{2}}^{1} \ln(1 - t^{3}) \, dt.$$

A. Both rely on the Fundamental Theorem of Calculus. We have $F'(x) = \sqrt{1 + x^4}$. We have $G(x) = -\int_1^{x^2} \ln(1 - t^3) dt$ and $dG/xd = (dG/dx^2)(d(x^2)/dx)$. Thus $G'(x) = -\ln(1 - (x^2)^3) d(x^2)/dx = -2x \ln(1 - x^6)$.

- 4. (30 pts.) Express the following as integrals. **DO NOT EVALUATE** the integrals. Sketches may be useful in obtaining partial credit if you make a mistake.
 - (a) The area bounded by the 3 curves

$$y = \sin(\pi x), \quad y = x^2 - x \text{ and } x = 2.$$

- A. (p.428, #26) The first two curves intersect at x = 1 and the $\sin(\pi x)$ lies below $x^2 x$ for 1 < x < 2. Thus the answer is $\int_1^2 (x^2 x \sin(\pi x)) dx$.
- (b) (p.448 #9) The volume of the solid obtained by rotating the region bounded by the curves $y^2 = x$ and x = 2y about the y-axis.
- A. The curves intersect at the points (0,0) and (4,2). The answer is $\int_0^2 \pi((2y)^2 (y^2)^2) dy$.