
Math 20B (Bender) Second Exam November 2000

1. (80 pts.) Evaluate the following integrals. Remember to show your work!

(a) [7.5, #6]
∫

(sinx) (cos(cos x)) dx

Ans. Use u = cos x to get rid of the messy cosine stuff. Then du = − sin x dx and so
we have

∫ − cos u du = − sin u + C, which gives − sin(cos x) + C.

(b) [7.5, #10]
∫

t2√
1 − t2

dt

Ans. Set t = sin θ. Then dt = cos θ dθ and the integral becomes
∫

sin2 θ dθ =
(1/2)

∫
(1 − cos 2θ)dθ, which is (θ/2) − (sin 2θ)/4 + C. You now must substi-

tute back in for θ:
sin−1 t

2
+

sin(2 sin−1 t)
4

+ C.

You can leave your answer in this form; however, you could simplify it using
sin(2θ) = 2 sin θ cos θ = 2t

√
1 − t2.

(c) [7.5, #26]
∫

sin(t1/2) dt

Ans. Set t1/2 = x to obtain dt = 2x dx and
∫

2x sin x dx. This integral can be done
by parts with x = u and sinx dx = dv. We obtain −2x cos x + 2

∫
cos x dx.

Integrating and substituting back gives −2t1/2 cos t1/2 + 2 sin t1/2 + C.

(d) [7.5, #44]
∫

1 + ex

1 − ex
dx

Ans. The are various possibilities. Setting ex = u, we have dx = du/eu and the integral
becomes ∫

1 + u

1 − u

du

u
=

∫ (
2

1 − u
+

1
u

)
du,

by partial fractions. Integrating and substituting back gives −2 ln |1−ex|+x+C.

2. (20 pts.)[see 7.7, #2] Let f(x) = e−x2/2 and let I =
∫ 1

0
f(x) dx.

It can be shown that f ′(x) < 0 for x > 0 and f ′′(x) < 0 for |x| ≤ 1.

The left, right, Trapezoidal, and Midpoint Rules were used to estimate I and the same
number of subintervals were used in each case. Call the estimates L, R, T , and M ,
respectively. Order I, L, M , R, and T from smallest to largest.

Ans. The function is concave and decreasing by the second and first derivative information,
respectively. Since the function is decreasing, L is bigger than everything else and
R is smaller than all others. Since the function is concave, T < I < M . Hence
R < T < I < M < L.

You could draw a picture, showing that the estimate from xi−1 to xi involves
rectangles for L and R and trapezoids for T and M. (The trapezoid for M is obtained
by drawing a tangent to the curve at (xi−1 + xi)/2. The previous comments about
the order are obvious from the picture.
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3. (25 pts.) Determine which of the following integrals are divergent and which are not.
Evaluate all integrals which are NOT divergent.

(a)
∫ 1

0

2x

x2 − 4x + 3
dx (b)

∫ 4

2

2x

x2 − 4x + 3
dx (c)

∫ 6

4

2x

x2 − 4x + 3
dx

Note that x2 − 4x + 3 = (x − 1)(x − 3).
Ans. The denominator vanishes at x = 1 and x = 3 and nowhere else. By what I posted

on the course web page, the first two integrals diverge; however, I won’t use that.
Using partial fractions,

2x

(x − 1)(x − 3)
=

−1
x − 1

+
3

x − 3

and so the indefinite integral is − ln |x− 1|+ 3 ln |x− 3|+ C. This blows up as x → 1
or x → 3, so the first two integrals diverge. The third integral is

(− ln 5 + 3 ln 3) − (− ln 3 + 3 ln 1) = − ln 5 + 4 ln 3.

You can leave the answer this way or write it as ln(81/5).


