1. (40 pts.) Let \mathcal{R} be the region between the two parabolas $y=x^{2}$ and $x=y^{2}$.

Let \mathcal{V} be the volume obtained when \mathcal{R} is rotated about the y-axis.
(a) Sketch the region \mathcal{R}. Include in your drawing the coordinates of the point where the parabolas intersect.

Ans. We omit the picture. The region lies in the first quadrant, is bounded below by $y=x^{2}$ and above by $x=y^{2}$, and the points of intersection are $(0,0)$ and $(1,1)$. You can find the intersection points from your sketch (and then easily check them in your head). Alternatively, you can find them by solving the equations: Squaring the first and using the second to eliminate y gives $x^{4}=x$ and so either $x=0$ or $x^{3}=1$. The solution to the latter is $x=1$. From $y=x^{2}$, we find the corresponding values of y.
(b) The arc length of the boundary of \mathcal{R} that is on the parabola $y=x^{2}$.

Ans. $\int_{0}^{1} \sqrt{1+4 x^{2}} d x$ or $\int_{0}^{1} \sqrt{1+4 y^{2}} d y$
(c) The volume of \mathcal{V}.

Ans. $\int_{0}^{1} \pi\left(\sqrt{y}^{2}-\left(y^{2}\right)^{2}\right) d y=\int_{0}^{1} \pi\left(y-y^{4}\right) d y$
(d) The surface area of \mathcal{V}. Be careful: \mathcal{V} has what might be called an inner and outer surface. The surface area is the sum of the areas of these two surfaces.
Ans. $\begin{aligned} & \int_{0}^{1} 2 \pi \sqrt{y} \sqrt{1+\left(1 / 2 y^{1 / 2}\right)^{2}} d y+\int_{0}^{1} 2 \pi y^{2} \sqrt{1+(2 y)^{2}} d y \\ &= \int_{0}^{1} 2 \pi \sqrt{y+1 / 4} d y+\int_{0}^{1} 2 \pi y^{2} \sqrt{1+4 y^{2}} d y\end{aligned}$
2. (20 pts.) Given the two curves $r=2$ and $r=4 \cos \theta$ in polar coordinates.
(a) Find the polar coordinates of the points where the curves intersect.

Ans. Setting the two values of r equal gives $\cos \theta=1 / 2$ and so $\theta= \pm \pi / 3$.
(b) Set up (but do not evaluate) an integral for the area that lies inside the curve $r=4 \cos \theta$ but outside the curve $r=2$; that is, the area of the region for which $2 \leq r \leq 4 \cos \theta$.
Ans. The curve $r=2$ lies inside $r=4 \cos \theta$ for $-\pi / 3<\theta<\pi / 3$ and outside it otherwise. Thus the answer is

$$
\int_{-\pi / 3}^{\pi / 3}\left((1 / 2)(4 \cos \theta)^{2}-(1 / 2) 2^{2}\right) d \theta=\int_{-\pi / 3}^{\pi / 3} 2\left(4 \cos ^{2} \theta-1\right) d \theta
$$

but you need not simplify. Integrating from $5 \pi / 3$ to $\pi / 3$ is NOT correct, but integrating from $5 \pi / 3$ to $7 \pi / 3$ is correct. Also, by symmetry, you could have gotten $2 \int_{0}^{\pi / 3} 2\left(4 \cos ^{2} \theta-1\right) d \theta$,
3. (30 pts.) Express each of the following in the form $a+b i$ with a and b real numbers.
(a) $(2+4 i) /(1-7 i)$

Ans. $\frac{2+4 i}{1-7 i}=\frac{(2+4 i)(1+7 i)}{(1-7 i)(1+7 i)}=\frac{-26+18 i}{50}=(-13 / 25)+(9 / 25) i=-0.52+0.36 i$
(b) $(2 \sqrt{3}+2 i)^{20}$

Ans. Put $2 \sqrt{3}+2 i$ in polar form: $r=\sqrt{12+4}=4$ and $\theta=\arctan (1 / \sqrt{3})=\pi / 6$.
Raise to the 20th power: $4^{20} e^{20 \pi i / 6}=4^{20} e^{4 \pi i / 3}=4^{20}(-(1 / 2)-(\sqrt{3} / 2) i)=-2^{39}-2^{39} \sqrt{3} i$
(c) $e^{3+i \pi / 2}$

Ans. $e^{3}\left(\cos (\pi / 2)+i \sin (\pi / 2)=0+e^{3} i=e^{3} i\right.$
4. (20 pts.) (a) Determine whether $\int_{0}^{\infty} e^{-x} d x \quad$ is convergent or divergent.

Ans. $\int_{0}^{\infty} e^{-x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x} d x=\lim _{b \rightarrow \infty}\left(-\left.e^{-x}\right|_{0} ^{b}=1\right.$, so it is convergent
(b) Use part (a) and the comparison theorem to determine whether $\int_{0}^{\infty} \frac{e^{-x}}{2+\sin x} d x$ is convergent or divergent.
Ans. Since $2+\sin x \geq 1$, the integrand in (b) is less than or equal to the integrand in (a). Hence we have convergence by the comparison theorem.
5. (30 pts.) Evaluate the following integrals.
(a) $\int \frac{\ln x}{x^{2}} d x$

Ans. Integrate by parts directly or let $\ln x=u$ and integrate by parts.
In the first case, $u=\ln x$ and $d v=x^{-2} d x$. Thus $d u=d x / x$ and $v=-1 / x$ and so
$\int \frac{\ln x}{x^{2}} d x=-(\ln x) / x+\int x^{-2} d x=-(\ln x) / x-(1 / x)+C$.
In the second case, we have $t=\ln x$ and so $d t=d x / x$ and $x=e^{t}$. Thus $\int \frac{\ln x}{x^{2}} d x=\int t e^{-t} d t$ after some algebra. Let $u=t$ and $d v=e^{-t} d t$ to integrate by parts. We omit the rest.
(b) $\int \cos x \cos (3 x) d x$

Ans. Using $\cos A \cos B=[\cos (A-B)+\cos (A+B)] / 2$ from Section 7.2 and the fact that $\cos (-C)=\cos C$, we have
$\int \cos x \cos (3 x) d x=\frac{1}{2} \int(\cos (2 x)+\cos (4 x)) d x=\frac{-\sin (2 x)}{4}-\frac{\sin (4 x)}{8}+C$.
(c) $\int \frac{d x}{x^{2} \sqrt{1-x^{2}}}$

Ans. Let $x=\sin t$. Then $d x=\cos t d t$ and so

$$
\int \frac{d x}{x^{2} \sqrt{1-x^{2}}}=\int \frac{\cos t d t}{\sin ^{2} t \cos t}=\int \csc ^{2} t d t=-\cot t+C
$$

Drawing the right triangle corresponding to $\sin t=x$, we see that $\cot t=\frac{\sqrt{1-x^{2}}}{x}$ and so our answer is $\frac{-\sqrt{1-x^{2}}}{x}+C$
6. (10 pts.) Write out the partial fraction decomposition of the function $\frac{x}{x^{2}-1}$.

Ans. Since $x^{2}-1=(x-1)(x+1)$, we have $\frac{x}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1}=\frac{(A+B) x+(A-B)}{x^{2}-1}$. Thus $A+B=1$ and $A-B=0$. Solving gives $A=B=1 / 2$ and so $\frac{x}{x^{2}-1}=\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1}$.
7. (15 pts.) Solve the differential equation $\frac{d y}{d x}=\frac{x^{2}+1}{x^{2} y} \quad$ with the initial condition $y(1)=-2$ for y as a function of x; that is, find $y(x)$.
Ans. Separating variables gives $\int y d y=\int \frac{x^{2}+1}{x^{2}} d x=\int\left(1+x^{-2}\right) d x$ and so $y^{2} / 2=x-1 / x+C$. By the initial condition, $(-2)^{2} / 2=1-1+C$ and so $C=2$. This is not the complete answer since there are two choices for the square root. Solving and using the fact that $y(1)$ is negative, we have $y=-\sqrt{2 x-2 / x+4}$.
8. (15 pts.) Use Euler's method with step size 1.0 to estimate $x(3.0)$, where $x(t)$ is the solution of the initial value problem

$$
\frac{d x}{d t}=x+t, \quad x(0)=0
$$

Ans. We have $h=1$. The following computation gives the answer 4 .

n	t_{n}	x_{n}	$h(d x / d t)$
0	0	0	0
1	1	0	1
2	2	1	3
3	3	4	

9. (20 pts.) Consider the integral $I=\int_{0}^{2} \frac{2}{4 x+1} d x$.
(a) Use the Midpoint rule with $n=2$ subintervals to approximate I.

Ans. Let $f(x)=2(4 x-1)^{-1}$ We have $\Delta x=(2-0) / 2=1$. Thus the Midpoint rule gives $1(f(1 / 2)+f(3 / 2))=2 /(4 / 2+1)+2 /(4 \times 3 / 2+1)=2 / 3+2 / 7=20 / 21$.
(b) How large should n be so that the midpoint approximation of I is accurate to within 6×10^{-4} ?

Ans. We need to bound $\left|f^{\prime \prime}(x)\right|$ for $0 \leq x \leq 2$. We have $f^{\prime}(x)=-8(4 x+1)^{-2}$ and $f^{\prime \prime}(x)=64(4 x+1)^{-3}$. Since $1 \leq 4 x+1 \leq 5$, we have $64 \geq f^{\prime \prime}(x) \geq 64 / 5^{3}$. Thus we can take $K=64$ in the formula $E_{M} \leq K(b-a)^{3} / 24 n^{2}$. This gives $E_{M} \leq 64 \times 2^{3} / 24 n^{2}$ and so we need $64 \times 8 / 24 n^{2} \leq 6 \times 10^{-4}$. This gives $n^{2} \geq \frac{64 \times 8 \times 10^{4}}{24 \times 6}=\frac{32 \times 10^{4}}{9}$. Hence $n \geq \sqrt{\frac{32 \times 10^{4}}{9}}=\frac{400}{\sqrt{3}}$.

