- Print Name, ID number and Section on your blue book.
- BOOKS and CALCULATORS are NOT allowed. One sheet of NOTES is allowed.
- You must show your work to receive credit.

1. (8 points) Which of the following integrals diverge? Remember to give a reason for your answer in each case!
(a) $\int_{0}^{1} e^{\sin x} d x$
(b) $\int_{0}^{1} \frac{d x}{\sqrt{x}}$
2. (12 points) Consider the curve given by $y(x)=\ln x$ for $1 \leq x \leq e$.
(a) Write down an integral for its length.
(b) The curve is rotated about the $y$-axis. Write down an integral for the surface area.

## Do NOT evaluate the integrals.

3. (16 points) Solve the differential equations:
(a) $\frac{d y}{d x}=e^{x+y}, \quad y(0)=0$.
(b) $\mathrm{y}^{\prime}(t)-t(y(t))^{2}=t$ (general solution).
4. (8 points) Write down an integral in polar coordinates for the area of the region that lies inside the curve $r=2 \cos \theta$ and outside the curve $r=\sqrt{2}$.
5. (6 points) Consider the differential equation $y^{\prime}(t)=1-y^{2}$. Find the limiting behavior of $y(t)$ (that is, what is $\left.\lim _{t \rightarrow+\infty} y(t)\right)$ if the initial condition is
(a) $y(0)=0$
(b) $y(0)=2$.

You do not need to solve the equation - a clear explanation in a few words will suffice.

