Math 20B

1. Since (a) is not an improper integral, it cannot diverge. We can integrate (b):

$$\lim_{a \to 0+} \int_{a}^{1} x^{-1/2} \, dx = \lim_{a \to 0} (1 - a^{1/2}) = 1.$$

Thus it converges.

2. (a) Since
$$y' = 1/x$$
, we have $\int_{1}^{e} \sqrt{1 + x^{-2}} \, dx$.
(b) The integral is $\int_{x=1}^{x=e} 2\pi x \sqrt{(dx)^2 + (dy)^2}$. You can write this as
 $\int_{1}^{e} 2\pi x \sqrt{1 + (dy/dx)^2} \, dx = \int_{1}^{e} 2\pi x \sqrt{1 + x^{-2}} \, dx$,

or you can notice that $x = e^y$ and $dx/dy = e^y$ and thus write it as

$$\int_0^1 2\pi e^y \sqrt{1+e^{2y}} \, dy.$$

- 3. (a) Since $e^{x+y} = e^x e^y$, we separate variables: $\int e^{-y} dy = \int e^x dx$ and so $-e^{-y} = e^x + C$. The initial condition gives -1 = 1 + C and so C = -2. You can write the answer in many ways, for instance $e^x + e^y = 2$.
 - (b) We have $y' = t + ty^2 = t(1 + y^2)$. Separating variables:

$$\int \frac{dy}{1+y^2} = \int t \, dt \quad \text{and so} \quad \arctan y = t^2/2 + C.$$

4. $r = 2\cos\theta$ and $r = \sqrt{2}$ intersect at $\cos\theta = 1/\sqrt{2}$. Thus $\theta = \pm \pi/4$. Since $\theta = 0$ gives $2\cos\theta = 2, \theta = 0$ is in the region. Thus we integrate from $-\pi/4$ to $\pi/4$:

$$\int_{-\pi/4}^{\pi/4} \left((2\cos\theta)^2 / 2 - (2^{1/2})^2 / 2 \right) d\theta = \int_{-\pi/4}^{\pi/4} (2\cos^2\theta - 1) \, d\theta.$$

5. For -1 < y < 1, y increases since y' > 0. For y > 1, y decreases. Thus y(t) approaches 1 as t gets large. [In (a) in increases with t and in (b) it decreases.]

END OF EXAM