1. Since (a) is not an improper integral, it cannot diverge. We can integrate (b):

$$
\lim _{a \rightarrow 0+} \int_{a}^{1} x^{-1 / 2} d x=\lim _{a \rightarrow 0}\left(1-a^{1 /}\right)=1
$$

Thus it converges.
2. (a) Since $y^{\prime}=1 / x$, we have $\int_{1}^{e} \sqrt{1+x^{-2}} d x$.
(b) The integral is $\int_{x=1}^{x=e} 2 \pi x \sqrt{(d x)^{2}+(d y)^{2}}$. You can write this as

$$
\int_{1}^{e} 2 \pi x \sqrt{1+(d y / d x)^{2}} d x=\int_{1}^{e} 2 \pi x \sqrt{1+x^{-2}} d x
$$

or you can notice that $x=e^{y}$ and $d x / d y=e^{y}$ and thus write it as

$$
\int_{0}^{1} 2 \pi e^{y} \sqrt{1+e^{2 y}} d y
$$

3. (a) Since $e^{x+y}=e^{x} e^{y}$, we separate variables: $\int e^{-y} d y=\int e^{x} d x$ and so $-e^{-y}=e^{x}+C$. The initial condition gives $-1=1+C$ and so $C=-2$. You can write the answer in many ways, for instance $e^{x}+e^{y}=2$.
(b) We have $y^{\prime}=t+t y^{2}=t\left(1+y^{2}\right)$. Separating variables:

$$
\int \frac{d y}{1+y^{2}}=\int t d t \quad \text { and so } \quad \arctan y==t^{2} / 2+C .
$$

4. $r=2 \cos \theta$ and $r=\sqrt{2}$ intersect at $\cos \theta=1 / \sqrt{2}$. Thus $\theta= \pm \pi / 4$. Since $\theta=0$ gives $2 \cos \theta=2, \theta=0$ is in the region. Thus we integrate from $-\pi / 4$ to $\pi / 4$:

$$
\int_{-\pi / 4}^{\pi / 4}\left((2 \cos \theta)^{2} / 2-\left(2^{1 / 2}\right)^{2} / 2\right) d \theta=\int_{-\pi / 4}^{\pi / 4}\left(2 \cos ^{2} \theta-1\right) d \theta
$$

5. For $-1<y<1, y$ increases since $y^{\prime}>0$. For $y>1, y$ decreases. Thus $y(t)$ approaches 1 as t gets large. [In (a) in increases with t and in (b) it decreases.]
