- Print Name, ID number and Section on your blue book.
- BOOKS and CALCULATORS are NOT allowed. Two sheets of NOTES are allowed.
- You must show your work to receive credit.
- 1. (36 pts.) For each of the following integrals, either evaluate the integral or prove that it diverges.

(a)
$$\int_{1}^{e} x^{3} \ln x \ dx$$

(b)
$$\int_0^{\pi/2} \frac{2 + \cos x}{x} dx$$

(c)
$$\int (1+2u)^{10} du$$

(a)
$$\int_{1}^{e} x^{3} \ln x \, dx$$
 (b) $\int_{0}^{\pi/2} \frac{2 + \cos x}{x} \, dx$ (c) $\int (1 + 2u)^{10} \, du$ (d) $\int_{0}^{1/\sqrt{2}} \frac{x^{2}}{\sqrt{1 - x^{2}}} \, dx$ (e) $\int_{1}^{2} \frac{1}{u + u^{2}} \, du$ (f) $\int e^{t + e^{t}} \, dt$

(e)
$$\int_{1}^{2} \frac{1}{u+u^2} du$$

(f)
$$\int e^{t+e^t} dt$$

2. (9 pts.) Express the following in the Cartesian form a + bi or the polar form (r, θ) , as indicated.

Do not leave trig functions in your answers.

- (a) The values of $w = \frac{1+i}{1-3i}$ and \overline{w} in Cartesian form.
- (b) The values of $(1-i)^{1/3}$ in polar form.
- (c) The value of $e^{2+\pi i/4}$ in Cartesian form.
- 3. (15 pts.) The equation $x^4 + y^4 = 1$ describes a curve that looks somewhat like a square with rounded corners. Set up integrals for each of the following.

Do not evaluate the integrals.

- (a) The area of the region enclosed by the curve.
- (b) The perimeter of the region; that is, the length of the curve that encloses the region.
- (c) The volume of the region obtained when the curve is rotated about the line y = -2.

Remark: The equation can be solved giving two functions y(x), namely $y = (1 - x^4)^{1/4}$ and $y = -(1 - x^4)^{1/4}$.

4. (9 pts.) Identify each of the following as either an ellipse, hyperbola or parabola.

(a)
$$y^2 = 3 + 2x^2$$

(a)
$$y^2 = 3 + 2x^2$$
 (b) $r = \frac{2}{2 + \cos \theta}$ (c) $y^2 = 3 - 2x^2$

(c)
$$y^2 = 3 - 2x^2$$

- 5. (12 pts.) Find the indicated solutions of the following differential equations.
 - (a) The particular solution of $dx/dt = x^2$, with the intial condition x(0) = 0.
 - (b) The general solution of xy' + y = 1.
- 6. (5 pts.) Set up an integral for the area that lies inside the polar curve $r = 1 + \cos \theta$ and outside the polar curve r = 1.

Do not evaluate the integral.

- 7. (10 pts.) Let $x = \tan(t/2)$.
 - (a) Express dt/dx as a rational function of x.

Using the complex forms

$$\sin(t/2) = \frac{e^{it/2} - e^{-it/2}}{2i}$$
 and $\cos(t/2) = \frac{e^{it/2} + e^{-it/2}}{2}$,

we have $x = \frac{e^{it/2} - e^{-it/2}}{i(e^{it/2} + e^{-it/2})}$. With some algebraic manipulation, this can be converted to

$$e^{it} = \frac{1+ix}{1-ix}. (1)$$

(b) Using (1), express $\sin t$ and $\cos t$ as rational functions of x with no imaginary numbers present.

This is called the *half angle substitution*. By using it, an integrand that is a rational function of $\sin t$ and $\cos t$ can be converted into a rational function of x. The integrand can then be evaluated by using partial fractions.

8. (4 pts.) The left, right, Trapezoidal and Midpoint rules with n=100 were used to estimate $I=\int_0^1 e^{-x^2/2} dx$. Calling the estimates L_{100} , R_{100} , T_{100} and M_{100} , arrange them and I in order starting with the smallest and ending with the largest. For example, someone might get the arrangement $L_{100} < R_{100} < T_{100} < I < M_{100}$ — but don't copy this since it is not correct.

You must correctly explain how you obtained your arrangement.