1. (a) By parts:

$$
\int_{1}^{e} x^{3} \ln x d x=\left.\left(x^{4} / 4\right) \ln x\right|_{1} ^{e}-\int_{1}^{e} \frac{x^{3}}{4} d x=\left(\left(x^{4} / 4\right) \ln x-x^{4} /\left.16\right|_{1} ^{e}=3 e^{4} / 16+1 / 16\right.
$$

(b) Since $(2+\cos x) / x \geq 1 / x$ and $\int_{0}^{\pi / 2}(1 / x) d x$ diverges, so does the given integral.
(c) Let $1+2 u=t$ to obtain $\int t^{1} 0(d t / 2)=t^{1} 1 / 22+C=(1+2 u)^{1} 1 / 22+C$.
(d) With $x=\sin t$ and $d x=\cos t d t$,

$$
\begin{aligned}
\int_{0}^{1 / \sqrt{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x & =\int_{0}^{\pi / 4} \sin ^{2} t d t=\int_{0}^{\pi / 4} \frac{1-\cos 2 t}{2} d t \\
& =\left.\frac{t-(\sin 2 t) / 2}{2}\right|_{0} ^{\pi / 4}=\pi / 8-1 / 4
\end{aligned}
$$

(e) By partial fractions,

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{u+u^{2}} d u & =\int_{1}^{2}\left(\frac{1}{u}-\frac{1}{1+u}\right) d u \\
& =\left(\ln |u|-\left.\ln |1+u|\right|_{1} ^{2}=(\ln 2-\ln 3)-(-\ln 2)=\ln (4 / 3)\right.
\end{aligned}
$$

(f) With $e^{t}=u, \int e^{t+e^{t}} d t=\int e^{u} d u=e^{u}+C=e^{e^{t}}+C$.
2. (a) $w=\frac{1+i}{1-3 i} \frac{1+3 i}{1+3 i}=\frac{-2+4 i}{10}=\frac{-1}{5}+\frac{2 i}{5}$. and $\bar{w}=\frac{-1}{5}-\frac{2 i}{5}$.
(b) In polar form, $1-i$ is $r=\sqrt{2}, \theta=-\pi / 4$. Thus the three answers have $r=2^{1 / 6}$ and $\theta=-\pi / 12,7 \pi / 12,5 \pi / 4$.
(c) $e^{2} / \sqrt{2}+e^{2} \sqrt{2} i$.
3. Notice that the values of x range from -1 to +1 . As remarked on the exam, $y= \pm\left(1-x^{4}\right)^{1 / 4}$ and so $y^{\prime}= \pm\left(-4 x^{3}\right)\left(1-x^{4}\right)^{-3 / 4} / 4=\mp x^{3}\left(1-x^{4}\right)^{-3 / 4}$. The region is symmetric in all four quadrants, so one can integrate over one quadrant and multiply by 4 for (a) and (b). One could also integrate over the upper or right half-plane and double or over the whole plane, so there are various forms for the answers.
(a) (whole plane) $\int_{-1}^{1}\left(\left(1-x^{4}\right)^{1 / 4}-\left(-\left(1-x^{4}\right)^{1 / 4}\right)\right) d x$
(b) (twice upper half-plane) $2 \int_{-1}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=2 \int_{-1}^{1} \sqrt{1+x^{6} \sqrt{1-x^{4}}} d x$
(c) (twice right half-plane) $2 \int_{0}^{1}\left(\pi\left(y_{\text {up }}+2\right)^{2}-\pi\left(y_{\text {down }}+2\right)^{2}\right) d x$ $=2 \pi \int_{0}^{1}\left(\left(\left(1-x^{4}\right)^{1 / 4}+2\right)^{2}-\left(-\left(1-x^{4}\right)^{1 / 4}+2\right)^{2}\right) d x=16 \pi \int_{0}^{1}\left(1-x^{4}\right)^{1 / 4} d x$
(You need not simplify as was done here.)
4. Rewriting in a more standard form and identifying:
(a) $-2 x^{2}+y^{2}=3$, a hyperbola;
(b) $\frac{1}{1+(1 / 2) \cos \theta}$, an ellipse;
(c) $2 x^{2}+y^{2}=3$, an ellipse.
5. Division by zero can be a problem.
(a) Separating variables would give the general solution of $-1 / x=t+C$ and so $x=\frac{-1}{t+C}$; however, this involves division by zero when $x=0$ and does not include the particular solution to this problem, namely $x(t)=0$ for all t.
(b) Rearranging: $y^{\prime}=(1-y) / x$ and so, after separating variables, $-\ln (1-y)=$ $\ln x+C$. You can leave the solution this way or you can solve for y : $y=1+A / x$, where we have replaced the constant e^{-C} with the constant A. There is a problem with division by zero when separating variables, but you will not lose any points if you ignored it. The division by zero solution is given by $y=1$, which is not included in $-\ln (1-y)=x+C$, but is included in $y=1+A / x$. It is not included in the first form because that would require $C=\infty$, but it is included in the second form with $A=0$. How did this happen? We have $A=e^{-C}$, which would not let $A=0$ unless $C=\infty$.
6. The curves intersect at $\cos \theta=0$; that is $\theta= \pm \pi / 2$. Since $1+\cos \theta>1$ for $-\pi / 2<$ $\theta<\pi / 2$, we obtain

$$
\int_{-\pi / 2}^{\pi / 2} \frac{(1+\cos \theta)^{2}-1^{2}}{2} d \theta
$$

Had we noticed the symmetry of the region, we could have integrated from 0 to $\pi / 2$ and doubled the result:

$$
\int_{0}^{\pi / 2}\left((1+\cos \theta)^{2}-1^{2}\right) d \theta
$$

7. (a) Since $t / 2=\arctan x, \frac{d t}{d x}=\frac{2}{1+x^{2}}$.
(b) $\sin x=\frac{\frac{1+i x}{1-i x}-\frac{1-i x}{1+i x}}{2 i}=\frac{(1+i x)^{2}-(1-i x)^{2}}{2 i(1-i x)(1+i x)}=\frac{2 x}{1+x^{2}}$ and similarly

$$
\cos x=\frac{1-x^{2}}{1+x^{2}} .
$$

8. The ordering is $R_{100}<T_{100}<I<M_{100}<L_{100}$. To see this, let $f(x)=e^{-x^{2} / 2}$. We have $f^{\prime}(x)=-x e^{-x^{2} / 2}$, which is negative for $0<x<1$ and $f^{\prime \prime}(x)=\left(x^{2}-1\right) e^{-x^{2} / 2}$, which is also negative for $0<x<1$. At this point one can draw a picture of $f(x)$, sketch one interval, and see that the order is correct for that interval. Alternatively, one could state: From the f^{\prime} result, R_{100} is smaller than all other values and L_{100} is larger than all other values. From the $f^{\prime \prime}$ result, $T_{100}<I<M_{100}$.
