YOU MUST SHOW YOUR WORK.

Q1. Evaluate the following integrals.

$$\int_0^8 \sqrt{\frac{2}{t}} dt \qquad \int e^{x+1} dx$$

- Q2. (a) Evaluate $\int \frac{\ln t}{t} dt$. (b) Evaluate $\int_{1}^{2} 4x(2x-3)^{50} dx$.
 - (c) Write down an integral for the area of the region enclosed by the three curves

$$y = e^x$$
, $y = x + 1$, $x = 2$.

Q3 (a) (8 pts) Evaluate the integrals

 $\int \frac{\ln x}{x^2} dx \qquad \int_0^{\pi} x \cos x \, dx \text{ (no trig functions in answer).}$

- (b) (4 pts) Set up, but **do not evaluate** an integral for the volume obtained by rotating the region between $y = x^4$ and y = 1 about the line y = -2.
- Q4 #1 (6 pts) Determine if the following integrals converge or diverge. Remember to give a reason for your answer.

(a)
$$\int_{-1}^{1} \frac{dx}{x^2}$$
 (b) $\int_{1}^{\infty} \frac{dx}{x^2}$

- Q4 #2 (6 pts) Estimating $\int_{-1}^{3} f(x) dx$ using the Trapezoidal Rule, I obtained $T_4 = 8$ and $T_8 = 5$. I also know that $|f'(x)| \le 54$ and $|f''(x)| \le 36$ for $-1 \le x \le 3$.
 - (a) Find a guaranteed bound on the error in T_8 .
 - (b) Find a reasonable estimate for the error in T_8 .
- Q5. (a) (4 pts) Use Euler's method with step size h = 0.5 to estimate y(1) where

$$y'(x) = 2y + 4x$$
 and $y(0) = 1$

Do the arithmetic!

- (b) (4 pts) Find a value of A so that $y = x^2 + Ax$ is a solution to the differential equation x(dy/dx) 2y = 3x.
- (c) (4 pts) Set up, but do not evaluate, an integral for the length in the first quadrant of the curve $x^2 + y^4 = 1$.
- Q6. 1. Express the following as a + bi, where a and b are real numbers and do NOT contain trig functions.

(a)
$$\frac{10}{2+i}$$
 (b) $e^{(1+i)\pi}$.

2. In each case, indicate if the curve is an ellipse, hyperbola or parabola.

(a)
$$x + y = \frac{4}{x - y}$$
 (b) $r = \frac{3}{1 - \sin \theta}$