YOU MUST SHOW YOUR WORK.

Q1. Evaluate the following integrals. $\quad \int_{0}^{8} \sqrt{\frac{2}{t}} d t \int e^{x+1} d x$
Q2. (a) Evaluate $\int \frac{\ln t}{t} d t$.
(b) Evaluate $\int_{1}^{2} 4 x(2 x-3)^{50} d x$.
(c) Write down an integral for the area of the region enclosed by the three curves

$$
y=e^{x}, \quad y=x+1, \quad x=2
$$

Q3 (a) (8 pts) Evaluate the integrals

$$
\int \frac{\ln x}{x^{2}} d x \quad \int_{0}^{\pi} x \cos x d x \text { (no trig functions in answer). }
$$

(b) (4 pts) Set up, but do not evaluate an integral for the volume obtained by rotating the region between $y=x^{4}$ and $y=1$ about the line $y=-2$.

Q4 \#1 (6 pts) Determine if the following integrals converge or diverge. Remember to give a reason for your answer.

$$
\begin{array}{ll}
\text { (a) } \int_{-1}^{1} \frac{d x}{x^{2}} & \text { (b) } \int_{1}^{\infty} \frac{d x}{x^{2}} .
\end{array}
$$

Q4 \#2 (6 pts$)$ Estimating $\int_{-1}^{3} f(x) d x$ using the Trapezoidal Rule, I obtained $T_{4}=8$ and $T_{8}=5$. I also know that $\left|f^{\prime}(x)\right| \leq 54$ and $\left|f^{\prime \prime}(x)\right| \leq 36$ for $-1 \leq x \leq 3$.
(a) Find a guaranteed bound on the error in T_{8}.
(b) Find a reasonable estimate for the error in T_{8}.

Q5. (a) (4 pts) Use Euler's method with step size $h=0.5$ to estimate $y(1)$ where

$$
y^{\prime}(x)=2 y+4 x \quad \text { and } \quad y(0)=1
$$

Do the arithmetic!
(b) (4 pts) Find a value of A so that $y=x^{2}+A x$ is a solution to the differential equation $x(d y / d x)-2 y=3 x$.
(c) (4 pts) Set up, but do not evaluate, an integral for the length in the first quadrant of the curve $x^{2}+y^{4}=1$.

Q6. 1. Express the following as $a+b i$, where a and b are real numbers and do NOT contain trig functions.
(a) $\frac{10}{2+i}$
(b) $e^{(1+i) \pi}$.
2. In each case, indicate if the curve is an ellipse, hyperbola or parabola.

$$
\begin{array}{ll}
\text { (a) } x+y=\frac{4}{x-y} & \text { (b) } \quad r=\frac{3}{1-\sin \theta}
\end{array}
$$

