Each quiz is worth 12 points.

Q1. These integrals could be done using substitution; however, substitution is not covered on this quiz; therefore, the solutions are done without it. If you did use substitution, you will still get credit.

$$\int_0^8 \sqrt{\frac{2}{t}} dt = \int_0^8 \sqrt{2} t^{-1/2} dt = \sqrt{2} \frac{t^{1/2}}{1/2} \Big|_0^8 = 8.$$

At some point you must write down an antiderivative of something like at^n . If you do not get that correct, you receive no credit.

If you manipulate the integrand incorrectly to start with (e.g. convert it to $\sqrt{2}t^{1/2}$) but integrate what you get correctly, you get 3 points. If you get to all but the 8 at the end, you get 5 points.

Due to poor design of the problem the integrand, $\sqrt{2/t}$, is not defined at t=0. Therefore, anyone noting this fact and saying the integral cannot be done will receive credit for the problem.

$$\int e^{x+1} dx = \int e e^x dx = e e^x + C = e^{x+1} + C.$$

Getting e^{x+1} (or ee^x) is worth 4 points. Having the C (even if you don't have e^{x+1}) is worth 2 points.

Q2 Each part is 4 points.

- (a) Use the substitution $u = \ln t$ to get $\int u \, du = u^2/2 + C = (\ln t)^2/2 + C$. Lose 2 points for leaving answer as $u^2/2 + C$. Lose 1 point for omitting C. If you get the wrong answer for some reason but have +C, get 1 point.
- (b) Use the substitution 2x 3 = u to get $\int (u+3)u^{50} du$, possibly with limits. The indefinite integal is $u^{52}/52 + 3u^{51}/51 + C$. There are three approaches:
 - (i) Evaluate the indefinite integral, getting $(2x-3)^{52}/52 + (2x-3)^{51}/17 + C$ and substitute in the limits.
 - (ii) Carry along the limits as x = 1 and x = 2, evaluate the integral as before (no +C needed) and then substitute.
 - (iii) Change the limits to values of u:

$$\int_{1}^{2} 4x(2x-3)^{50} dx = \int_{x=1}^{x=2} (u+3)u^{50} du = \int_{u=-1}^{u=1} (u+3)u^{50} du$$
$$= \left(u^{52}/52 + 3u^{51}/51\right|_{-1}^{1} = 2/17.$$

If you don't substitute inside the integral for all the x values, including dx, when changing variables, no credit. If you substitute the values x = 1, 2 for u instead of u = -1, 1 when evaluating the definite integral, lose 3 points. If you use a correct approach but make an algebra error, lose 1 point.

- (c) The first two curves intersect at x=0, the answer is $\int_0^2 (e^x-(x+1)) \, dx$. Either of the answers $\left| \int_0^2 (e^x-(x+1)) \, dx \right|$ or $\int_0^2 |e^x-(x+1)| \, dx$ is also acceptable. If you get the integrand wrong, lose 2 points. Each limit on the integral is worth 1 point.
- Q3. (a) Integrate by parts with $u = \ln x$ and $dv = x^{-2}dx$:

$$\int \frac{\ln x}{x^2} \, dx = \frac{-\ln x}{x} + \int \frac{dx}{x^2} = \frac{-\ln x}{x} - \frac{1}{x} + C.$$

1 point for right choice of u and dv, 1 point for +C, 2 points for rest of it.

Use integration by parts with u = x and $dv = \cos x \, dx$:

$$\int_0^{\pi} x \cos x \, dx = x \sin x \Big|_0^{\pi} - \int_0^{\pi} \sin x \, dx = \cos x \Big|_0^{\pi} = -2.$$

1 point for right choice of u and dv, 2 points for carrying out the indefinite integration, 1 point for correct evaluation at 0 and π .

(b) $\pi \int_{-1}^{1} ((1-(-2))^2 - (x^4-(-2))^2) dx$, or some equivalent rewrite of it. If you used method of cylinders (Sec. 6.3; not assigned):

$$2\pi \int_0^1 (y+2)(y^{1/4} - (-y^{1/4})) \ dy.$$

Q4. #1. The first integral must be written as a sum of two because of the problem and x = 0. There is one point for splitting the integral. If you try to do (a) without splitting the integral, there is no credit. Since $\int x^{-2} dx = -1/x + C$, we have

$$\int_0^1 \frac{dx}{x^2} = \lim_{a \to 0^+} \left(\frac{1}{a} - 1 \right) = \infty \quad \text{and} \quad \int_1^\infty \frac{dx}{x^2} = \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = 1.$$

Hence the first integral diverges and the second converges.

Lose 1 point total if you fail to write either or both integrals as limits and simply say something like

$$\int_{1}^{\infty} \frac{dx}{x^{2}} = \left. \frac{-1}{x} \right|_{1}^{\infty} = 0 - (-1) = 1.$$

There is another way to do these integrals: The second integral can be done by the result in the text for $\int_1^\infty \frac{1}{x^p} dx$, provided you use it correctly. You can also use the result for $\int_0^b \frac{1}{x^p} dx$ discussed in class. Using these correctly gives full credit. Using them incorrectly gives no credit.

#2. Since you need not do the arithmetic, if you use the right formulas and right numbers and then do the arithmetic incorrectly, you lose no points.

- (a) The text gives the error bound $K(b-a)^3/12n^2$, where K is a bound on the second derivative. Thus we take K=36, a=-1, b=3 and n=8 to obtain $\frac{36\times 4^3}{12\times 8^2}$. You can leave the answer like this or simplify it to 3.
- (b) In the supplement's notation, an estimate for the error is $C_T/8^2$ and, by (3), $C_T \approx \frac{4 \times 4^2 (5-8)}{3}$. You can leave it like this, or you can simplify it to obtain -1 for the estimated error.

Getting C_T is worth 2 points. Knowing you want $C_T/8^2$ is worth 1 point.

Incidentally, I was integrating $2x^3 - 9$ and the value of the integral is 4.

Q5. (a) Since $x_0 = 0$ and h = 0.5, we want y_2 . We have $y_0 = y(0) = 1$,

$$y_1 = y_0 + F(x_0, y_0) = 1 + 0.5 \times (2 \times 1 + 4 \times 0) = 2,$$

$$y_2 = y_1 + hF(x_1, y_1) = 2 + 0.5 \times (2 \times 2 + 4 \times 0.5) = 5.$$

If you know the formula for Euler's method and how to use it, 2 points.

If you use the formula and correctly get y_1 , 1 more point.

(b) We have y' = 2x + A and $xy' - 2y = x(2x + A) - 2(x^2 + Ax) = -Ax$. Thus A = -3.

If your work shows you need to compute y' and substitute it into the differential equation to find A, but you did not get A = -3, lose one point.

(c) You have to solve for x or y and then use the formula for arc length. Also, you will need to notice that the values of x (or y) start at zero (since we are in the first quadrant) and go to 1. Solving for y:

$$y = (1 - x^2)^{1/4}$$
, $y' = -\frac{x}{2}(1 - x^2)^{-3/4}$, length $y' = \int_0^1 \sqrt{1 + \frac{x^2}{4(1 - x^2)^{3/2}}} dx$.

If you solved for x instead:

$$x = (1 - y^4)^{1/2}, \quad x' = -2y^3(1 - y^4)^{-1/2}, \quad \text{length} = \int_0^1 \sqrt{1 + \frac{4y^6}{1 - y^4}} \, dy.$$

Partial credit: Knowing the formula for arc length as indicated by your work, 1 point.

Knowing you need to solve for x or y as indicated by your work, 1 point.

Also getting the correct value for x' or y', 1 more point.

Getting the correct limits on the integral, 1 point.

Q6. 1.(a)
$$\frac{10}{2+i} = \frac{10}{2+i} \frac{2-i}{2-i} = \frac{10(2-i)}{2^2+1^2} = 2(2-i) = 4-2i.$$
 (or $4+(-2)i$)

(b)
$$e^{(1+i)\pi} = e^{\pi+i\pi} = e^{\pi}\cos\pi + ie^{\pi}\sin\pi = -e^{\pi}$$
. (or $-e^{\pi} + 0i$)

2. (a) Multiply out:
$$x^2 - y^2 = 4$$
, a hyperbola (b) a parabola