1. The curve goes from $x=0$ to $x=1$. Solving for $y(x)$, we have $y=\sqrt{1-x^{4}}$. Thus $y^{\prime}=-2 x^{3}\left(1-x^{4}\right)^{-1 / 2}$.
(a) $\int_{0}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+\frac{4 x^{6}}{1-x^{4}}} d x=\int_{0}^{1} \sqrt{\frac{1-x^{4}+4 x^{6}}{1-x^{4}}} d x$.
(b) $\int_{0}^{1} 2 \pi y(x) \sqrt{1+\left(y^{\prime}\right)^{2}} d x=2 \pi \int_{0}^{1} \sqrt{\left(1-x^{4}\right)\left(1+\frac{4 x^{6}}{1-x^{4}}\right)} d x$ $=2 \pi \int_{0}^{1} \sqrt{1-x^{4}+4 x^{6}} d x$.
2. (a) $0.08 / 4^{2}=0.005$, since error is roughly C / n^{2} and we have multiplied n by 4 .
(b) The error in the Midpoint Rule is about half that of the Trapezoidal Rule and opposite in sign. Hence the answer is -0.04 . (You will get partial credit for 0.04 .)
3. (a) $2 \cos (3 \pi / 4)+2 i \sin (3 \pi / 4)=-\sqrt{2}+\sqrt{2} i$.
(b) $r=2^{1 / 3}$. The values of θ are

$$
\frac{3 \pi / 4}{3}=\frac{\pi}{4}, \quad \frac{3 \pi / 4+2 \pi}{3}=\frac{11 \pi}{12}, \quad \frac{3 \pi / 4+4 \pi}{3}=\frac{19 \pi}{12} .
$$

(You need not do the arithmetic to simplify the angles.)
4. Separating variables: $\frac{d y}{y}=2 x d x$ and so $\ln y=x^{2}+C$. Using $y(0)=2$, we have $\ln 2=0^{2}+C$ and so $C=\ln 2$. At $x=3$ we have $\ln y=3^{2}+C=9+\ln 2$ and so $y=e^{9+\ln 2}=2 e^{9}$.
5. We have

$$
\frac{2 x^{2}}{x^{2}-1}=2+\frac{2}{(x-1)(x+1)}=2+\frac{1}{x-1}-\frac{1}{x+1},
$$

where it is up to you how you find the partial fractions. Integrating gives $2 x+$ $\ln \left(\frac{x-1}{x+1}\right)+\mathrm{C}$.

