- Print Name, ID number and Section on your blue book.
- BOOKS and CALCULATORS are NOT allowed. One page of notes (both sides) is allowed.
- You must show your work to receive credit.
- 1. (24 pts.) For each of the following integrals, either evaluate the integral or prove that it diverges. You may leave complex numbers in your answers.

(a)
$$\int_0^9 \frac{dx}{1+\sqrt{x}}$$
 (b) $\int \cos^2 x \ e^x \ dx$ (c) $\int x\sqrt{1-x^2} \ dx$ (d) $\int_{-1}^1 \frac{dx}{x^2}$

- 2. (9 pts.) Consider the differential equation dy/dt = y(2+y)(3-y).
 - (a) Find all constants A such that y(t) = A is a solution to the differential equation. You must briefly explain how you determined the values.
 - (b) If the initial condition is y(0) = 4, what is $\lim_{t\to\infty} y(t)$? You must briefly explain why.
 - (c) If the initial condition is y(0) = -1, what is $\lim_{t\to\infty} y(t)$? You must briefly explain why.

Note: An answer to (b) or (c) might be ∞ or $-\infty$.

- 3. (18 pts.) Let \mathcal{R} be the region bounded above by the curve $x = y^2$, on the right by the line x = 4, and below by the x-axis. In this problem, do NOT evaluate the integrals.
 - (a) Sketch \mathcal{R} and write down an integral for its area.
 - (b) The region \mathcal{R} is rotated about the y-axis, giving a solid \mathcal{V} . Write down an integral for the volume of \mathcal{V} .
 - (c) The inner surface of \mathcal{V} is generated by rotating the part of the curve $x = y^2$ that is on the boundary of \mathcal{R} . Write down an integral for the area of the inner surface of \mathcal{V} .

- 4. (5 pts.) Find the general solution to the differential equation $e^x y' + 1 = 0$.
- 5. (6 pts.) The equation $r = 1 2\cos\theta$ describes a curve in polar coordinates that looks like a loop within a loop. Write down an integral for the area of the inner loop.
- 6. (9 pts.) Identify each of the following conic sections as an ellipse (includes circle), hyperbola, parabola or degenerate (no curve or intersecting straight lines).

(a)
$$x^2 + 3y^2 - 1 = 0$$
 (b) $x^2 - 3y^2 - 1 = 0$

(b)
$$x^2 - 3y^2 - 1 = 0$$

(c)
$$x^2 + 3y^2 + 1 = 0$$
 (d) $x^2 - 3y^2 + 1 = 0$

(d)
$$x^2 - 3y^2 + 1 = 0$$

7. (6 pts.) Express each of the following as x + yi where x and y are real numbers. You may leave trig functions in your answer.

(a)
$$\frac{1+i}{2+i}$$
 (b) e^{1+2i}

(b)
$$e^{1+2i}$$

8. (3 pts.) The complex number $i^{1/2004}$ has 2004 values. Let z be the value that is closest to -1. What is arg(z)?

"Closest to -1" means the distance between -1 and z when they are plotted in the plane is as small as possible. In other words, |z-(-1)| = |z+1| is as small as possible.

Hint: Look at it geometrically. The values of i^{2004} are points on the circle of radius 1 centered at the origin.