1. (a) Use the substitution $x=u^{2}$ so that $d x=2 u d u$. Then

$$
\begin{aligned}
\int_{0}^{9} \frac{d x}{1+\sqrt{x}} & =\int_{0}^{3} \frac{2 u d u}{1+u}=2 \int_{0}^{3}\left(1-\frac{1}{1+u}\right) d u \\
& =2(u-\ln |1+u|)]_{0}^{3}=2(3-\ln 4)
\end{aligned}
$$

(b) This can be done using the identity $\cos ^{2} x=\frac{\cos (2 x)+1}{2}$ and integrating by parts. It can also be done with complex numbers, which is what is done here.

$$
\begin{aligned}
\int \cos ^{2} x e^{x} d x & =\int\left(\frac{e^{i x}+e^{-i x}}{2}\right)^{2} e^{x} d x \\
& =\frac{1}{4} \int\left(e^{(1+2 i) x}+2 e^{x}+e^{(1-2 i) x}\right) d x \\
& =\frac{e^{(1+2 i) x}}{4(1+2 i)}+\frac{e^{x}}{2}+\frac{e^{(1-2 i) x}}{4(1-2 i)}+C
\end{aligned}
$$

Since you can leave complex numbers in your answer, you can stop here.
(c) You can use trig substitution, but it is much easier to set $1-x^{2}=t$ so that $-2 x d x=d t$ and then we have

$$
\int x \sqrt{1-x^{2}} d x=\frac{-1}{2} \int \sqrt{t} d t=\frac{-1}{2} \frac{t^{3 / 2}}{3 / 2}+C=\frac{-\left(1-x^{2}\right)^{3 / 2}}{3}+C
$$

(d) This is an improper integral because we are dividing by zero when $x=0$. Thus we need to write $\int_{-1}^{1}=\int_{-1}^{0}+\int_{0}^{1}$. It turns out that neither of the integrals on the right converges and so the original integral diverges. To see the divergence of \int_{0}^{1} :

$$
\int_{0}^{1} \frac{d x}{x^{2}}=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-2} d x=\lim _{a \rightarrow 0^{+}}\left(a^{-1}-1\right)=\infty
$$

Alternatively, you can use a test discussed in class:

$$
\int_{0}^{b} x^{-p} d x \text { converges if and only if } p<1
$$

2. (a) The values of A are given by $y^{\prime}=0$. Thus $A=-2,0$ and 3 .
(b) The answer is 3 . When $y>3, y^{\prime}<0$ Thus y decreases toward $A=3$.
(c) The answer is -2 . When $-2<y<0, y^{\prime}<0$. Thus y decreases toward $A=-2$.
3. \mathcal{R} looks like a right triangle with vertices at $(0,0),(4,0)$ and $(4,2)$ and the hypotenuse bulging up.
(a) $\int_{0}^{4} \sqrt{x} d x$ or $\int_{0}^{2}\left(4-y^{2}\right) d y$.
(b) $\int_{0}^{2} \pi\left(4^{2}-y^{4}\right) d y$ or $\int_{0}^{4} 2 \pi x \sqrt{x} d x$, if you studied the method in Section 6.3 on your own.
(c) The answer has the form $\int 2 \pi x \sqrt{(d x)^{2}+(d y)^{2}}$, which needs to be converted to an integral over either x or y :

$$
2 \pi \int_{0}^{4} x \sqrt{1+1 /(2 \sqrt{x})^{2}} d x \quad \text { or } \quad 2 \pi \int_{0}^{2} y^{2} \sqrt{(2 y)^{2}+1} d y
$$

4. Separating variables: $e^{x} y^{\prime}=-1$ and so $d y=-e^{-x} d x$. Integrating: $y=e^{-x}+C$.
5. We get two loops because the curve passes through the origin when $1-2 \cos \theta=0$. This happens when $\theta=\cos ^{-1}(1 / 2)= \pm \pi / 3$ (which is $\pm 60^{\circ}$). The inner loop occurs when $|r|$ is smaller. Thinking about that, or graphing r versus θ in polar coordinates, or graphing r versus θ in Cartesian coordinates, we can see that this happens when $-\pi / 3 \leq \theta \leq \pi / 3$. Thus the answer is $\int_{-\pi / 3}^{\pi / 3} \frac{(1-2 \cos \theta)^{2}}{2} d \theta$. You could also have done half a loop ($0 \leq \theta \leq \pi / 3$) and doubled the integral.
6. (a) is an ellipse, (b) and (d) are hyperbolas and (c) is degenerate because no values of x and y satisfy the equation.
7. (a) $\frac{1+i}{2+i}=\frac{1+i}{2+i} \frac{2-i}{2-i}=\frac{(1+i)(2-i)}{2^{2}+1^{2}}=(3 / 5)+(1 / 5) i$.
(b) $e \cos 2+(e \sin 2) i$.
8. Since $\arg (i)=\pi / 2$, the roots have arguments $\frac{2 k \pi+\pi / 2}{2004}$. To get the value closest to -1 , we want the value closest to $\arg (-1)=\pi$. This occurs when $k=1002$ because we then have $\pi+\pi / 4008$. The answer is $\pi+\pi / 4008$.
