YOU MUST SHOW YOUR WORK.

- Q1. Evaluate the following. (a) $\frac{d}{dx} \int_{1}^{x^2} \sqrt{t^3 + 1} dt$ (b) $\int t\sqrt{t 1} dt$
- Q2. Consider the region \mathcal{R} bounded by the parabola $y = x(4-x) = 4x x^2$ and the line y = x for $0 \le x \le 3$.
 - (a) Find the area of the region \mathcal{R} .
 - (b) That part of the region \mathcal{R} lying below y = 3 is rotated about the y-axis. Write down, but do not evaluate, an integral for the volume of the resulting region.
- Q3. (a) Write out the form of the partial fraction decomposition, but do NOT determine the numerical values of the coefficients: $\frac{5}{(x^2-1)^2 (x^2+1)}$.
 - (b) Evaluate $\int \frac{dx}{x^2\sqrt{x^2-1}}$. (c) Evaluate $\int \frac{dx}{e^x+1}$.
- Q4. (a) Write down the 3-interval Trapezoidal Rule approximation (T_3) to $\int_0^1 \sqrt{1-x^3} dx$. Don't do any simplification.
 - (b) Is the integral $\int_{4}^{\infty} \frac{dx}{(x-1)^2}$ convergent or divergent and why?
 - (c) Is the integral $\int_{1}^{\infty} \frac{(1+e^{-x}) dx}{x}$ convergent or divergent and why?
 - (d) Some function f(x) satisfies f'(x) > 0 and f''(x) > 0 for $0 \le x \le 4$. The values of $I = \int_0^4 f(x) dx$, R_{20} (20-interval Right Endpoint Rule) and T_{20} (20-interval Midpoint Rule) were computed. The three values were 5.02, 5.05 and 5.06. Which is I? R_{20} ? T_{20} ? No need to explain.
- Q5. (a) For what values of b is $y = b^2 x 2b$ a solution of $(xy' y)^2 = 4y'$? (There is at least one value.)
 - (b) For what values of c is y = c/x a solution of $(xy' y)^2 = 4y'$? (There is at least one value.)
 - (c) The curve given by $x^2y^3 = 64$ that lies between the points (1, 4) and (8, 1) is rotated about the *y*-axis. Write down an integral for the area of the surface? For full credit, do arithmetic. For example write 4, not $64^{1/3}$, and 144, not 12^2 .

- Q6. (a) Write $\sin x \cos(2x)$ as a sum of exponential functions. Your answer should contain complex numbers.
 - (b) Expand $\frac{2x}{x^2+4}$ in partial fractions so that the denominators are all first degree in x.
 - (c) Find real numbers x and y so that $e^{x+iy} = -1$. You may NOT leave logarithms or trig functions in your answer.