1. $d x / d t=6 t^{2}+6 t$ and $d y / d t=2 t-3$.
(a) length $=\int_{-4}^{2} \sqrt{\left(6 t^{2}+6 t\right)^{2}+(2 t-3)^{2}} d t$
(b) To be vertical, $d x / d t=0$, which means $t=0$ or $t=-1$. This gives the two points $(-1,2)$ and $(0,6)$.
2. (a) Let $\mathbf{c}=\overrightarrow{B A}=\langle 1,1,-1\rangle$ and $\mathbf{b}=\overrightarrow{A C}=\langle x-2,2,4\rangle$. Since \mathbf{b} must be perpendicular to $\mathbf{c}, \mathbf{b} \cdot \mathbf{c}=0$. Thus $x=4$ and so C is $(4,3,4)$ and $\mathbf{b}=\langle 2,2,4\rangle$.
(b) Let $\mathbf{a}=\overrightarrow{B C}=\langle 3,3,3\rangle$. The cosine is

$$
\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{6+6+12}{\sqrt{4+4+16} \sqrt{9+9+9}}=\frac{24}{\sqrt{24} \sqrt{27}}=\sqrt{\frac{24}{27}}=\frac{2 \sqrt{2}}{3} .
$$

3. (a) First plane: The equation is $\langle 1,2,0\rangle \cdot\langle x-0, y-0, z-0\rangle=0$; that is, $x+2 y=0$. Second plane: Since the line is in the plane, $\langle 1,1,0\rangle$ is parallel to the plane. With $t=0$, we see that $(0,2,0)$ is in the plane. (Any other value of t would work.) Since the origin is in the plane, $\langle 0,2,0\rangle$ is parallel to the plane. Taking the cross product of the two vectors, we get the normal $\langle 0,0,2\rangle$ and the equation of the plane is $2 z=0$ or, equivalently, $z=0$.
(b) We have the equations $x+2 y=0$ and $z=0$ for the planes. Since both must hold for the intersection, we could take, say, $y=t$. Then $x=-2 t$ and $z=0$. In other words, $\langle x, y, z\rangle=t\langle-2,1,0\rangle$. Of course, other answers are also valid, for example, $\langle x, y, z\rangle=t\langle 2,-1,0\rangle+\langle-4,2,0\rangle$.

Alternatively, we could take the cross product of the two normals to the planes, $\langle 1,2,0\rangle$ and $\langle 0,0,1\rangle$ to get a vector in the direction of the line. We also need a point on the line. The origin works since the plane passes through the origin.

Alternatively, we could find two points on the line, P and Q and then the line would be $t \overrightarrow{P Q}+Q$. An obvious point is the origin. We can find another by choosing any nonzero value for x or y; for example, with $x=12, x+2 y=0$ gives us $y=-6$. Since we have $z=0$ from the second plane, our point is $(12,-6,0)$.

