1. $d x / d t=4 t+3$ and $d y / d t=3 t^{2}-6 t$.
(a) length $=\int_{-2}^{4} \sqrt{(4 t+3)^{2}+\left(3 t^{2}-6 t\right)^{2}} d t$
(b) To be horizontal, $d y / d t=0$, which means $t=0$ or $t=2$. This gives the two points $(-1,2)$ and $(13,-2)$.
2. (a) Let $\mathbf{c}=\overrightarrow{B A}=\langle 1,1,-1\rangle$ and $\mathbf{a}=\overrightarrow{B C}=\langle x-1,3,3\rangle$. Since a must be perpendicular to $\mathbf{c}, \mathbf{a} \cdot \mathbf{c}=0$. Thus $x=1$ and so C is $(1,3,4)$ and $\mathbf{a}=\langle 0,3,3\rangle$.
(b) Let $\mathbf{b}=\overrightarrow{A C}=\langle-1,2,4\rangle$. The cosine is

$$
\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{6+12}{\sqrt{9+9} \sqrt{1+4+16}}=\frac{18}{\sqrt{18} \sqrt{21}}=\sqrt{\frac{18}{21}}=\sqrt{\frac{6}{7}} .
$$

3. (a) First plane: Since $\langle 1-0,1-0,0-0\rangle$ and $\langle 1-0,1-0,2-0\rangle$ are parallel to the plane, their cross product is a normal. The cross product is $\langle 2,-2,0\rangle$. Since the origin is in the plane, the equation is $2 x-2 y=0$ or, equivalently, $x-y=0$.
Second plane: The equation is $\langle 1,0,2\rangle \cdot\langle x-0, y-0, z-0\rangle=0$; that is, $x+2 z=0$.
(b) We have the equations $x-y=0$ and $x+2 z=0$ for the planes. Since both must hold for the intersection, we could take, say, $z=t$. Then $x=-2 t$ and $y=-2 t$. In other words, $\langle x, y, z\rangle=t\langle-2,-2,1\rangle$. Of course, other answers are also valid, for example, $\langle x, y, z\rangle=t\langle 2,2,-1\rangle+\langle-2,-2,1\rangle$.

Alternatively, we could take the cross product of the two normals to the planes, $\langle 1,-1,0\rangle$ and $\langle 1,0,2\rangle$ to get a vector in the direction of the line. We also need a point on the line. The origin works since the plane passes through the origin.

Alternatively, we could find two points on the line, P and Q. Then the line is $t \overrightarrow{P Q}+Q$. An obvious point is the origin. We can find another by choosing any nonzero value for x, y or z; for example, with $x=6, x-y=0$ gives us $y=6$ and $x+2 z=0$ gives us $z=-3$, and so our point is $(6,6,-3)$.

