- PRINT NAME

- Write version on your blue book and hand in this exam inside your blue book.

VERSION A

- Put your name, ID number, and section number (or time) on your blue book.
- You may have ONE PAGE of notes. NO CALCULATORS are allowed.
- You must show your work to receive credit.

1. (24 pts.) Suppose $g(x, y)$ is "well behaved" (that is, you can differentiate it as much as you want and those derivatives are continuous), $x=s-t$ and $y=s+3 t$.
(a) Express $\frac{\partial g}{\partial s}$ in terms of g_{x} and g_{y} ONLY.
"ONLY" means that neither s nor t should appear in your answer.
(b) Express $\frac{\partial^{2} g}{\partial s \partial t}$ and $\frac{\partial^{2} g}{\partial t \partial s}$ in terms of $g_{x x}, g_{x y}$ and $g_{y y}$ ONLY.

$$
\text { For problems } 2,3 \text {, and } 4 \quad f(x, y)=x^{2}+y^{3}+4 y^{2}+2 x y .
$$

2. (36 pts.) (a) For what value of \mathbf{u} is $D_{\mathbf{u}} f(0,1)$ a maximum?
(b) What is the maximum value of $D_{\mathbf{u}} f(0,1)$?
(c) Find a value of \mathbf{u} so that $D_{\mathbf{u}} f(0,1)=0$.
3. (12 pts) Find the tangent line to the level curve $f(x, y)=5$ at $(0,1)$.
4. (28 pts) (a) Find the critical points of $f(x, y)$.
(b) Use the second derivative test to classify them.
