1. Use the chain rule.
(a) $g_{s}=g_{x} x_{s}+g_{y} y_{s}=g_{x}+g_{y}$.
(b) Let $h=g_{s}$. Then

$$
\begin{aligned}
g_{t s}=g_{s t} & =h_{t}=h_{x} x_{t}+h_{y} y_{t}=-h_{x}+3 h_{y} \\
& =-\left(g_{x x}+g_{x y}\right)+3\left(g_{x y}+g_{y y}\right)=-g_{x x}+2 g_{x y}+3 g_{y y}
\end{aligned}
$$

2. Note that $\nabla f=\left\langle 2 x+2 y, 3 y^{2}+8 y+2 x\right\rangle$ and $\nabla f(0,1)=\langle 2,11\rangle$.
(a) $\mathbf{u}=\nabla f /|\nabla f|=125^{-1 / 2}\langle 2,11\rangle$.
(b) The maximum is $|\nabla f|=\sqrt{125}=5 \sqrt{5}$.
(c) We need $\mathbf{u} \cdot \nabla f=0$.

There are two possible answers: $125^{-1 / 2}\langle 11,-2\rangle$ and $125^{-1 / 2}\langle-11,2\rangle$.
3. This could be done it at least two ways.

- The tangent line is in a direction in which $D_{\mathbf{u}}=0$. Such a vector was found in $2(\mathrm{c})$. Then $\langle x, y\rangle=t \mathbf{u}+\langle 0,1\rangle$. Since all we need is a vector parallel to \mathbf{u}, we can drop the factor of $125^{-1 / 2}$ if we wish to get the cleaner formula $\langle x, y\rangle=t\langle 11,-2\rangle+\langle 0,1\rangle$.
- Since $d y / d x=-f_{x} / f_{y}$, we have $d y / d x=-2 / 11$. Thus the line is $y-1=(-2 / 11)(x-0)$, which can be written $y=-2 x / 11+1$.

4. (a) We need $\nabla f=\mathbf{0}$. From Problem 2, this gives us $2 x+2 y=0$ and $3 y^{2}+8 y+2 x=0$. The first equation give $x=-y$, which turns the second equation into $3 y^{2}+6 y=0$. The solutions are $y=0$ and $y=-2$. Since $x=-y$, the critical points are $(0,0)$ and $(2,-2)$.
(b) We have $f_{x x}=2, f_{x y}=2$ and $f_{y y}=6 y+8$. Thus $f_{x x}>0$.

At $(0,0), f_{y y}=8$ and $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}>0$ so the point is a (local) minimum.
At $(2,-2), f_{y y}=-4$ and $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}<0$ so the point is a saddle.

