- 1. Use the chain rule.
 - (a) $g_s = g_x x_s + g_y y_s = 2g_x + g_y$.
 - (b) Let $h = g_s$. Then

$$g_{st} = g_{ts} = h_t = h_x x_t + h_y y_t = h_x - h_y$$

= $(2g_{xx} + g_{xy}) - (2g_{xy} + g_{yy}) = 2g_{xx} - g_{xy} - g_{yy}$.

- 2. Note that $\nabla f = \langle 2x + 4y, \ 3y^2 + 2y + 4x \rangle$ and $\nabla f(0,1) = \langle 4,5 \rangle$.
 - (a) $\mathbf{u} = \nabla f / |\nabla f| = 41^{-1/2} \langle 4, 5 \rangle.$
 - (b) The maximum is $|\nabla f| = \sqrt{41}$.
 - (c) We need $\mathbf{u} \cdot \nabla f = 0$. There are two possible answers: $41^{-1/2}\langle 5, -4 \rangle$ and $41^{-1/2}\langle -5, 4 \rangle$.
- 3. This could be done it at least two ways.
 - The tangent line is in a direction in which $D_{\mathbf{u}} = 0$. Such a vector was found in 2(c). Then $\langle x, y \rangle = t\mathbf{u} + \langle 0, 1 \rangle$. Since all we need is a vector parallel to \mathbf{u} , we can drop the factor of $41^{-1/2}$ if we wish to get the cleaner formula $\langle x, y \rangle = t \langle 5, -4 \rangle + \langle 0, 1 \rangle$.
 - Since $dy/dx = -f_x/f_y$, we have dy/dx = -4/5. Thus the line is y 1 = (-4/5)(x 0), which can be written y = -4x/5 + 1.
- 4. (a) We need $\nabla f = \mathbf{0}$. By Problem 2, we have 2x + 4y = 0 and $3y^2 + 2y + 4x = 0$. The first equation give x = -2y, which turns the second equation into $3y^2 6y = 0$. The solutions are y = 0 and y = 2. Since x = -2y, the critical points are (0, 0) and (-4, 2).
 - (b) We have $f_{xx} = 2$, $f_{xy} = 4$ and $f_{yy} = 6y + 2$. Thus $f_{xx} > 0$. At (0,0), $f_{yy} = 2$ and $f_{xx}f_{yy} - (f_{xy})^2 < 0$ so the point is a saddle. At (-4,2), $f_{yy} = 14$ and $f_{xx}f_{yy} - (f_{xy})^2 > 0$ so the point is a (local) minimum.