1. Use the chain rule.
(a) $g_{s}=g_{x} x_{s}+g_{y} y_{s}=2 g_{x}+g_{y}$.
(b) Let $h=g_{s}$. Then

$$
\begin{aligned}
g_{s t}=g_{t s} & =h_{t}=h_{x} x_{t}+h_{y} y_{t}=h_{x}-h_{y} \\
& =\left(2 g_{x x}+g_{x y}\right)-\left(2 g_{x y}+g_{y y}\right)=2 g_{x x}-g_{x y}-g_{y y} .
\end{aligned}
$$

2. Note that $\nabla f=\left\langle 2 x+4 y, 3 y^{2}+2 y+4 x\right\rangle$ and $\nabla f(0,1)=\langle 4,5\rangle$.
(a) $\mathbf{u}=\nabla f /|\nabla f|=41^{-1 / 2}\langle 4,5\rangle$.
(b) The maximum is $|\nabla f|=\sqrt{41}$.
(c) We need $\mathbf{u} \cdot \nabla f=0$.

There are two possible answers: $41^{-1 / 2}\langle 5,-4\rangle$ and $41^{-1 / 2}\langle-5,4\rangle$.
3. This could be done it at least two ways.

- The tangent line is in a direction in which $D_{\mathbf{u}}=0$. Such a vector was found in $2(\mathrm{c})$. Then $\langle x, y\rangle=t \mathbf{u}+\langle 0,1\rangle$. Since all we need is a vector parallel to \mathbf{u}, we can drop the factor of $41^{-1 / 2}$ if we wish to get the cleaner formula $\langle x, y\rangle=t\langle 5,-4\rangle+\langle 0,1\rangle$.
- Since $d y / d x=-f_{x} / f_{y}$, we have $d y / d x=-4 / 5$. Thus the line is $y-1=(-4 / 5)(x-0)$, which can be written $y=-4 x / 5+1$.

4. (a) We need $\nabla f=\mathbf{0}$. By Problem 2, we have $2 x+4 y=0$ and $3 y^{2}+2 y+4 x=0$. The first equation give $x=-2 y$, which turns the second equation into $3 y^{2}-6 y=0$. The solutions are $y=0$ and $y=2$. Since $x=-2 y$, the critical points are $(0,0)$ and $(-4,2)$.
(b) We have $f_{x x}=2, f_{x y}=4$ and $f_{y y}=6 y+2$. Thus $f_{x x}>0$.

At $(0,0), f_{y y}=2$ and $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}<0$ so the point is a saddle.
At $(-4,2), f_{y y}=14$ and $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}>0$ so the point is a (local) minimum.

