1. Let $f(x, y)=4-x^{2}-y^{2}$. The $x y$-plane is given by $z=0$. Thus the intersection with $z=4-x^{2}-y^{2}$ is given by $x^{2}+y^{2}=4$. Since $f_{x}=-2 x$ and $f_{y}=-2 y$, the area is

$$
\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d A \quad \text { where } \quad D=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}
$$

We must convert this to an iterated integral. This can be done in Cartesian coordinates in two ways:

$$
\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \sqrt{1+4 x^{2}+4 y^{2}} d x d y=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \sqrt{1+4 x^{2}+4 y^{2}} d y d x
$$

and in polar coordinates in two ways:

$$
\int_{\alpha}^{\alpha+2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\int_{0}^{2} \int_{\alpha}^{\alpha+2 \pi} \sqrt{1+4 r^{2}} r d \theta d r
$$

where your answer can have any value for α; e.g., 0 or $-\pi$.
2. (a) $r=\sqrt{1^{2}+3}=2, \theta=\pi / 3$ and $z=2$.
(b) $\rho=\sqrt{1^{2}+3+2^{2}}=\sqrt{8}, \theta=\pi / 3$ and $\phi=\pi / 4$.
3. (a) Any vector $c\langle 1,1,0\rangle \times\langle 0,1,2\rangle=c\langle 2,-2,1\rangle$ with $c \neq 0$.
(b) Since $\langle 0,0,0\rangle$ is on the first line and $\langle 1,1,1\rangle$ is on the second, the closest distance is given by the length of the projection of $\mathbf{v}=\langle 1,1,1\rangle$ onto $\mathbf{w}=\langle 2,-2,1\rangle$. This equals

$$
\frac{|\mathbf{u} \cdot \mathbf{w}|}{|\mathbf{w}|}=\frac{|2-2+1|}{\sqrt{4+4+1}}=1 / 3
$$

4. This is an example in the text. The answer is $f(0, \pm 1)=2$ (maxima) and $f(\pm 1,0)=1$ (minima).
5. (a) $(\mathbf{f}(t) \cdot \mathbf{g}(t))^{\prime}=\mathbf{f}^{\prime}(t) \cdot \mathbf{g}(t)+\mathbf{f}(t) \cdot \mathbf{g}^{\prime}(t)$ At $t=2$ this is 1 .
(b) $|\mathbf{f}(t)|^{\prime}=(\sqrt{\mathbf{f}(t) \cdot \mathbf{f}(t)})^{\prime}=\frac{\mathbf{f}^{\prime}(t) \cdot \mathbf{f}(t)+\mathbf{f}(t) \cdot \mathbf{f}^{\prime}(t)}{2 \sqrt{\mathbf{f}(t) \cdot \mathbf{f}(t)}}$. At $t=2$ this equals $-1 / \sqrt{5}$.
(c) Since $\mathbf{v} \times \mathbf{v}=0$ for any vector $\mathbf{v},(\mathbf{f}(t) \times \mathbf{f}(t))$ is constant-the zero vector. Thus its derivative is the zero vector $\langle 0,0,0\rangle$. (Since it is not the scalar 0 , you will lose some points if you write the scalar 0 instead of the vector $\overrightarrow{0}$.)
6. You'll have to imagine the sketch using the following description. The region lies in the first quadrant, is bounded below by the parabola $y=x^{2}$ and above by the line $y=2 x$. These curves intersect at $(0,0)$ and $(2,4)$. When integrating in the other order, x goes from $y=2 x$ to $y=x^{2}$ and then y goes from 0 to 4 . Thus the answer is

$$
\int_{0}^{4} \int_{y / 2}^{\sqrt{y}} f(x, y) d x d y
$$

7. Since $h_{x}=f$ and $h_{y}=g$, it follows that $h_{x y}=f_{y}$ and $h_{y x}=g_{x}$. Since $h_{x y}=h_{y x}$ (Clairaut's Theorem), we have $f_{y}=g_{x}$.
8. The intersection with the $x y$-plane is the circle $x^{2}+y^{2}=4$. Thus the answer is

$$
\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r d r d \theta=\int_{0}^{2 \pi}\left(2 r^{2}-r^{4} / 4\right]_{r=0}^{r=2} d \theta=\int_{0}^{2 \pi} 4 d \theta=8 \pi
$$

9. This is most easily done by writing it as a sum of two iterated integrals:

$$
\int_{0}^{1} \int_{0}^{2} x e^{x y} d y d x+\int_{0}^{2} \int_{0}^{1} y e^{x y} d x d y
$$

The first integral is

$$
\int_{0}^{1} \int_{0}^{2} x e^{x y} d y d x=\int_{0}^{1}\left(e^{x y}\right]_{y=0}^{y=2} d y d x=\int_{0}^{1}\left(e^{2 x}-1\right) d x=\left(\frac{1}{2} e^{2 x}-x\right]_{0}^{1}=e^{2} / 2-3 / 2 .
$$

Similarly,

$$
\int_{0}^{2} \int_{0}^{1} y e^{x y} d x d y=\int_{0}^{2}\left(e^{y}-1\right) d y=e^{2}-3
$$

Combining these we have the answer: $3 e^{2} / 2-9 / 2$.
If you do not split the integral into two, it is still possible to do it, but it is quite a bit more work. Suppose we integrate over x and then y. Using integration by parts

$$
\begin{aligned}
\int(x+y) e^{x y} d x & =\int x e^{x y} d x+\int y e^{x y} d x \\
& =x(1 / y) e^{x y}-\int(1 / y) e^{x y} d x+e^{x y}=\left(x / y-1 / y^{2}+1\right) e^{x y}
\end{aligned}
$$

Thus $\int_{0}^{1}(x+y) e^{x y} d x=\left(1 / y-1 / y^{2}+1\right) e^{y}+1 / y^{2}-1$. Using integration by parts with $u=1 / y$ and $d v=e^{y} d y$, we have

$$
\int(1 / y) e^{y} d y=(1 / y) e^{y}+\int\left(1 / y^{2}\right) e^{y} d y
$$

Thus

$$
\begin{aligned}
\int\left(\left(1 / y-1 / y^{2}+1\right) e^{y}+1 / y^{2}-1\right) d y & =(1 / y) e^{y}+\int\left(e^{y}+1 / y^{2}-1\right) d y \\
& =(1 / y) e^{y}+e^{y}-1 / y-1
\end{aligned}
$$

The integral from $y=0$ to $y=2$ is improper and can be evaluated because $\lim _{y \rightarrow 0}\left(e^{y}-\right.$ $1) / y=1$ since it is the definition of the derivative of e^{y} at $y=0$. The rest is straightforward and we get the same answer as before.

