
Math 21C Final Exam Solutions Fall 2002

1. Let f(x, y) = 4− x2 − y2. The xy-plane is given by z = 0. Thus the intersection with
z = 4 − x2 − y2 is given by x2 + y2 = 4. Since fx = −2x and fy = −2y, the area is

∫∫

D

√
1 + 4x2 + 4y2 dA where D = {(x, y) | x2 + y2 ≤ 4}.

We must convert this to an iterated integral. This can be done in Cartesian coordinates
in two ways:

∫ 2

−2

∫ √
4−y2

−
√

4−y2

√
1 + 4x2 + 4y2 dx dy =

∫ 2

−2

∫ √
4−x2

−√
4−x2

√
1 + 4x2 + 4y2 dy dx

and in polar coordinates in two ways:
∫ α+2π

α

∫ 2

0

√
1 + 4r2 r dr dθ =

∫ 2

0

∫ α+2π

α

√
1 + 4r2 r dθ dr,

where your answer can have any value for α; e.g., 0 or −π.

2. (a) r =
√

12 + 3 = 2, θ = π/3 and z = 2.
(b) ρ =

√
12 + 3 + 22 =

√
8, θ = π/3 and φ = π/4.

3. (a) Any vector c〈1, 1, 0〉 × 〈0, 1, 2〉 = c〈2,−2, 1〉 with c 6= 0.
(b) Since 〈0, 0, 0〉 is on the first line and 〈1, 1, 1〉 is on the second, the closest distance

is given by the length of the projection of v = 〈1, 1, 1〉 onto w = 〈2,−2, 1〉. This
equals

|u · w|
|w| =

|2 − 2 + 1|√
4 + 4 + 1

= 1/3.

4. This is an example in the text. The answer is f(0,±1) = 2 (maxima) and f(±1, 0) = 1
(minima).

5. (a) (f(t) · g(t))′ = f ′(t) · g(t) + f(t) · g′(t) At t = 2 this is 1.

(b) |f(t)|′ =
(√

f(t) · f(t)
)′

=
f ′(t) · f(t) + f(t) · f ′(t)

2
√

f(t) · f(t) . At t = 2 this equals −1/
√

5.

(c) Since v×v = 0 for any vector v, (f(t)× f(t)) is constant—the zero vector. Thus
its derivative is the zero vector 〈0, 0, 0〉. (Since it is not the scalar 0, you will lose
some points if you write the scalar 0 instead of the vector ~0.)

6. You’ll have to imagine the sketch using the following description. The region lies in
the first quadrant, is bounded below by the parabola y = x2 and above by the line
y = 2x. These curves intersect at (0, 0) and (2, 4). When integrating in the other
order, x goes from y = 2x to y = x2 and then y goes from 0 to 4. Thus the answer is

∫ 4

0

∫ √
y

y/2

f(x, y) dx dy.
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7. Since hx = f and hy = g, it follows that hxy = fy and hyx = gx. Since hxy = hyx

(Clairaut’s Theorem), we have fy = gx.

8. The intersection with the xy-plane is the circle x2 + y2 = 4. Thus the answer is

∫ 2π

0

∫ 2

0

(4 − r2)r dr dθ =
∫ 2π

0

(
2r2 − r4/4

]r=2

r=0
dθ =

∫ 2π

0

4 dθ = 8π.

9. This is most easily done by writing it as a sum of two iterated integrals:

∫ 1

0

∫ 2

0

xexy dy dx +
∫ 2

0

∫ 1

0

yexy dx dy.

The first integral is

∫ 1

0

∫ 2

0

xexy dy dx =
∫ 1

0

(
exy

]y=2

y=0
dy dx =

∫ 1

0

(e2x−1) dx =
(

1
2e2x−x

]1

0
= e2/2−3/2.

Similarly, ∫ 2

0

∫ 1

0

yexy dx dy =
∫ 2

0

(ey − 1) dy = e2 − 3.

Combining these we have the answer: 3e2/2 − 9/2.
If you do not split the integral into two, it is still possible to do it, but it is quite

a bit more work. Suppose we integrate over x and then y. Using integration by parts
∫

(x + y)exy dx =
∫

xexy dx +
∫

yexy dx

= x(1/y)exy −
∫

(1/y)exy dx + exy = (x/y − 1/y2 + 1)exy.

Thus
∫ 1

0
(x + y)exy dx = (1/y − 1/y2 + 1)ey + 1/y2 − 1. Using integration by parts

with u = 1/y and dv = ey dy, we have
∫

(1/y)ey dy = (1/y)ey +
∫

(1/y2)ey dy.

Thus
∫ (

(1/y − 1/y2 + 1)ey + 1/y2 − 1
)

dy = (1/y)ey +
∫

(ey + 1/y2 − 1) dy

= (1/y)ey + ey − 1/y − 1.

The integral from y = 0 to y = 2 is improper and can be evaluated because limy→0(ey−
1)/y = 1 since it is the definition of the derivative of ey at y = 0. The rest is
straightforward and we get the same answer as before.
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