1. While one could differentiate five times, it is easier to multiply series. In the following, \cdots stands for terms of degree higher than five since we only need to keep terms through the fifth degree.

$$\cos x = 1 - x^2/2 + x^4/24 + \cdots$$

$$\sin(x^2) = x^2 - \cdots$$

$$f(x) = (1 - x^2/2 + x^4/24 - \cdots)(x^2 - \cdots) = x^2 - x^4/2 + \cdots$$

Thus $a_1 = a_3 = a_5 = 0$, $a_2 = 1$ and $a_4 = -1/2$.

- 2. (a) The ratio test shows that the series converges for all x. $(R = \infty)$
 - (b) The root test gives |2x-3| < 1, which is equivalent to |x-3| < 1/2, so the radius of convergence is 1/2.
 - (c) The ratio or root test has a limit of |x| and so R=1.
- 3. Often more than one test can be used.
 - (a) The series diverges because the terms do not go to zero: $|a_n| = (9/8)^n/108n^2 \to \infty$. You could also use the ratio or the root test.
 - (b) It converges. Perhaps the easiest test to use in the integral test with $f(x) = x^{-1/2}e^{-x^{1/2}}$ since $\int f(x) dx = 2e^{-x^{1/2}} + C$.
 - (c) Since $\sin x$ is an increasing function when x is small, $\sin(1/n)$ is a decreasing function. By the alternating series test, we have convergence. Comparison with $\sum 1/n$ shows that we do not have absolute convergence.
 - (d) The ratio test has a limit of 1/4 and so the series converges.
- 4. (a) Using the series for f(x): $f(-x) = \sum a_n(-x)^n = \sum (-1)^n a_n x^n$. Thus $b_n = (-1)^n a_n$
 - (b) Since power series are unique and f(-x) = f(x), the two series have the same coefficients; that is, $b_n = a_n$. From (a), $a_n = (-1)^n a_n$, which gives us $a_n = -a_n$ for odd n. Thus $a_n = 0$ when n is odd.