1. (a) An integrating factor is $\exp \left(\int-\tan x d x\right)=\cos x$. Thus $(y \cos x)^{\prime}=\cos x$ and

$$
y(x)=\frac{1}{\cos x} \int \cos x d x=\frac{\sin x+C}{\cos x}=\tan x+C \sec x
$$

(b) Since the characteristic equation for the homogeneous equation is

$$
0=r^{2}-2 r+1=(r-1)^{2}
$$

$y=C_{1} e^{t}+C_{2} t e^{t}$ is the general solution to the homogeneous equation. By undetermined coefficients, a particular solution is $y=A t+B$. Since $y^{\prime}=A$ and $y^{\prime \prime}=0$, we have

$$
4 t=0-2 A+(A t+B)=A t+(B-2 A)
$$

Thus $A=4$ and $B=8$. The general solution to (b) is therefore

$$
y=C_{1} e^{t}+C_{2} t e^{t}+4 t+8
$$

(c) Rearrange, separate variables and integrate:

$$
\int \frac{d y}{y}=\int \frac{d x}{1+x^{2}} \quad \text { and so } \quad \ln y=\arctan x+C
$$

You may leave the answer this way, with or without absolute values on y, or you may solve for y.
2. Since $4+x^{2}=0$ for $x= \pm 2 i$, the radius of convergence of the series for $\frac{1-x}{4+x^{2}}$ is 2 . Thus the best we can guarantee is $|x|<2$.
3. Since $y^{\prime \prime}-2 y^{\prime} / t+y / t^{2}=e^{t}$ and $W\left[t, t^{2}\right]=\left|\begin{array}{cc}t & t^{2} \\ 1 & 2 t\end{array}\right|=t^{2}$, a particular solution is

$$
y=-t \int \frac{t^{2} e^{t}}{t^{2}} d t+t^{2} \int \frac{t e^{t}}{t^{2}} d t=-t \int e^{t} d t+t^{2} \int \frac{e^{t} d t}{t}
$$

4. By the table for Laplace transforms,

$$
s Y(s)+y(0)+e^{-s} Y(s)=1 / s \quad \text { and so } \quad Y(s)=\frac{1}{s\left(s+e^{-s}\right)}
$$

