1. (a) Since $|\sin x| \leq 1$, converges by comparison with $2 \sum 1 / n^{2}$ (the p test).
(b) We have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2|\sin n|}{n} & =\frac{\sin 1}{1}+\sum_{n=2}^{\infty} \frac{|\sin (n-1)|}{n-1}+\frac{|\sin n|}{n} \\
& \geq \sum_{n=2}^{\infty} \frac{|\sin (n-1)|+|\sin n|}{n} \\
& >\frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{n}, \quad \text { by }|\sin (x-1)|+|\sin x|>1 / 2
\end{aligned}
$$

Since $(1 / 2) \sum 1 / n$ diverges to $+\infty$ and (b) is larger, it diverges.
2. The radius of convergence is 1 . It converges conditionally for $x=2$ and absolutely for $0<x<2$.
3. (a) Separate variables: $e^{-x} d x=e^{t} d t$. Thus $-e^{-x}=e^{t}+C$ and we get $C=-2$.
(b) The characteristic equation has roots $1 \pm i$, so the general solution is

$$
x=C_{1} e^{t} \cos t+C_{2} e^{t} \sin t
$$

Since $x(0)=C_{1}$, we have $C_{1}=0$. Then $x^{\prime}=C_{2} e^{t}(\sin t+\cos t)$ and, since $x^{\prime}(0)=2, C_{2}=2$. In summary, $x=2 e^{t} \sin t$.
(c) The equation is exact: $\partial(2 x+y) / \partial y=\partial\left(3 y^{2}+x\right) / \partial x$. Since

$$
\int(2 x+y) d x=x^{2}+x y+f(y) \quad \text { and } \quad \int\left(3 y^{2}+x\right) d y=y^{3}+x y+g(x)
$$

the general solution is $x^{2}+x y+y^{3}=C$.
(d) If we think of z as a function of w, the equation is linear: $z+w=w d z / d w$. Writing in the standard way: $z^{\prime}(w)-(1 / w) z=1$. Since $\exp \left(\int-(1 / w) d w\right)=1 / w$, $(z / w)^{\prime}=1 / w$ and so $z=w \int(1 / w) d w=w(\ln w+C)$.
(e) The indicial equation for $x^{2} y^{\prime \prime}-6 y=0$ is $r(r-1)-6=0$ and so $r=3,-2$. Thus the general solution to the homogeneous equation is $y=C_{1} x^{-2}+C_{2} x^{3}$. The Wronskian is $\left|\begin{array}{cc}x^{-2} & x^{3} \\ -2 x^{-3} & 3 x^{2}\end{array}\right|=5$. By variation of parameters for the equation $y^{\prime \prime}-\left(6 / x^{2}\right) y=5$, a particular solution is

$$
\begin{aligned}
-x^{-2} \int \frac{x^{3} 5}{5} d x+x^{3} \int \frac{x^{-2} 5}{5} d x & =-x^{-2} \int x^{3} d x+x^{3} \int x^{-2} d x \\
& =-x^{-2} \frac{x^{4}}{4}+x^{3}\left(-x^{-1}\right)=-5 x^{2} / 4
\end{aligned}
$$

Thus the general solution is $y=C_{1} x^{-2}+C_{2} x^{3}-5 x^{2} / 4$.
4. The Wronskian of two independent solutions t and e^{t} must be nonzero for all t inside the interval where the solutions exist; in this case for all t. The Wronskian of these two functions is $(t-1) e^{t}$, which vanishes at $t=1$.
5. Separating variables: $h^{-1 / 2} d h=-2 d t$ and so $2 h^{1 / 2}=-2 t+C$. Since $h(0)=16$, $C=2 \sqrt{16}=8$. Thus $h^{1 / 2}=4-t$.
(a) After 1 hour, $h^{1 / 2}=3$ and so $h=9$ - the water is nine feet deep.
(b) After 6 hours, one might (incorrectly) write $h^{1 / 2}=4-6=-2$ and conclude that the water is four feet deep. In fact, at $t=4$ we had division by zero in separation of variables. Thus our solution is only valid for $0 \leq t \leq 4$. After four hours the tank is empty and remains so.
6. We have $\sum(n+1)(n+2) a_{n+2} x^{n}-\sum n a_{n} x^{n}-\sum a_{n} x^{n}=0$. Thus the recursive relation is

$$
(n+1)(n+2) a_{n+2}-(n+1) a_{n}=0 \quad \text { and so } \quad a_{n+2}=\frac{a_{n}}{n+2}
$$

The initial conditions give us $a_{0}=y(0)=1$ and $a_{1}=y^{\prime}(0)=1$. Thus

$$
a_{2}=\frac{a_{0}}{2}=\frac{1}{2}, \quad a_{3}=\frac{a_{1}}{3}=\frac{1}{3}, \quad a_{4}=\frac{a_{2}}{4}=\frac{1}{8} .
$$

7. Since $s^{2} Y(s)-s y(0)-y^{\prime}(0)+2 Y(s)=G(s), Y(s)=\frac{1+G(s)}{2+s^{2}}$. We can compute $G(s)$ in one of two ways:
(a) By integration:

$$
G(s)=\int_{0}^{1} e^{-s t}(+1) d t+\int_{1}^{2} e^{-s t}(-1) d t=\frac{1-2 e^{-s}+e^{-2 s}}{s}
$$

(b) By using $u_{c}(t)$ and the table of Laplace transforms:

$$
g(t)=1-2 u_{1}(t)+u_{2}(t) \quad \text { and so } \quad G(s)=\frac{1}{s}-\frac{2 e^{-s}}{s}+\frac{e^{-2 s}}{s}
$$

Thus we have

$$
Y(s)=\frac{s+1-2 e^{-s}+e^{-2 s}}{s\left(2+s^{2}\right)}
$$

