- Please put your name and ID number on your blue book.
- CLOSED BOOK, but ONE SIDE of one page of notes are allowed.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.

1. (10 pts.) Here are some differential equations for the function y. For each equation (i) give its order and (ii) tell whether or not it is linear.
(a) $y^{\prime \prime}(t)=t^{2} y(t)+7$
(b) $\left(x^{2}+1\right) d x=(x+1) d y$
(c) $\left(y^{2}\right)^{\prime}+y=1$
(d) $y^{\prime} y^{\prime \prime}=2$
(e) $x^{2} y^{\prime}(x)+x y(x)+x^{3}=0$
2. (2 pts.) The functions $p(t)$ and $q(t)$ are continuous for all t and y_{1} and y_{2} are particular solutions to the linear homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. How can you tell if $c_{1} y_{1}+c_{2} y_{2}$ is the general solution?
3. (6 pts.) Find the critical points (also called equilibrium points) of the autonomous differential equation $d y / d t=y\left(1-y^{2}\right)$ and classify each one as asymptotically stable or unstable.
4. (32 pts.) Solve each of the following differential equations. If no initial conditions are given, find the general solution.
(a) $y^{\prime \prime}+9 y=0 ; \quad y(0)=0, y^{\prime}(0)=6$.
(b) $d x / d t=e^{x+t} ; \quad x(0)=1$.
(c) $(2 x+y) d x+(x-2 y) d y=0$.
(d) $t y^{\prime}(t)-y(t)=t^{2}, t>0$.
