1. (a) second order linear
(b) first order linear
(c) first order nonlinear
(d) second order nonlinear
(e) first order linear
2. Compute $y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}$ (the Wronskian) and see if it is nonzero at some point. Alternatively verify that one function is not a constant multiple of the other.
3. There are 3: $y=-1$ is stable, $y=0$ is unstable and $y=+1$ is stable.

Your answer should show how you got these results.
4. (a) The answer is $2 \sin (3 t)$. The general solution is $c_{1} \sin (3 t)+c_{2} \cos (3 t)$. By the initial conditions, $c_{1}=2$ and $c_{2}=0$.
Your solution should show how the general solution was found.
(b) Separate variables: $\int e^{-x} d x=\int e^{t} d t$ and so $-e^{-x}=e^{t}+C$. The initial condition gives $-e^{-1}=1+C$ and so $C=-1-e^{-1}$. Another way to write it: $e^{-x}+e^{t}=1+1 / e$.
(c) The equation is exact. Integrating gives $x^{2}+x y-y^{2}=C$.
(d) Divide by t to get it in standard form. An integrating factor is $\exp \left(\int-d t / t\right)=1 / t$. Thus $y^{\prime} / t-y / t^{2}=1$ and so $(y / t)^{\prime}=1$. Solving, $y / t=t+C$. You could rewrite this as $y=t^{2}+C t$.

