1. (a) An integrating factor is $e^{t / /^{2} / 2}$ and so $e^{t^{2} / 2} y=\int t^{3} e^{t^{2} / 2} d t$. The integral can be done using integration by parts with $u=t$ or it can be done by substitution with $x=t^{2} / 2$ and then integration by parts. The result is $\left(t^{2}-2\right) e^{t^{2} / 2}+C$ and so $y=t^{2}-2+C e^{-t^{2} / 2}$. Using the initial condition, $0=-2+C$ and so $C=2$.
(b) Separate variables: $e^{-y} d y=-t^{-2} d t$. Thus $-e^{-y}=t^{-1}+C$.
(c) Set $y=e^{r t}$ to obtain $r^{2}-2 r+2=0$ and so $r=1 \pm \sqrt{-1}$. Hence the general solution is $y=C_{1} e^{(1+i) t}+C_{2} e^{(1-i) t}$, which can be written $y=e^{t}\left(D_{1} \sin t+D_{2} \cos t\right)$.
(d) The homogeneous equation $y^{\prime \prime}-4 y^{\prime}+y=0$ gives $r^{2}-4 r+4=0$ and so $r=-2$ is a double root. Thus the general solution to the homogeneous equation is $y=\left(C_{1}+C_{2} t\right) e^{2 t}$. One can use variation of parameters or undetermined coefficients to find a particular solution. Using the latter, we set $y=C e^{t}$ and obtain $y^{\prime \prime}-4 y^{\prime}+4 y=C e^{t}$ and so $C=2$. Thus the general solution is $y=\left(C_{1}+C_{2} t\right) e^{2 t}+2 e^{t}$.
(e) In matrix notation, $\mathbf{x}^{\prime}=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right) \mathbf{x}$. The determinant of $\left(\begin{array}{cc}2-r & -1 \\ 3 & -2-r\end{array}\right)$ is $r^{2}-1$ and so $r= \pm 1$. Using $\mathbf{x}=e^{t} \mathbf{c}$ we obtain

$$
e^{t}\binom{c_{1}}{c_{2}}=e^{t}\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)\binom{c_{1}}{c_{2}}=e^{t}\binom{2 c_{1}-c_{2}}{3 c_{1}-2 c_{2}},
$$

which has a solution $e^{t}\binom{1}{1}$. With $\mathbf{x}=e^{-t} \mathbf{c}$ we obtain

$$
-e^{-t}\binom{c_{1}}{c_{2}}=e^{-t}\left(\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right)\binom{c_{1}}{c_{2}}=e^{-t}\binom{2 c_{1}-c_{2}}{3 c_{1}-2 c_{2}},
$$

which has a solution $e^{-t}\binom{1}{3}$. Thus the general solution is

$$
\binom{x_{1}}{x_{2}}=d_{1} e^{t}\binom{1}{1}+d_{2} e^{-t}\binom{1}{3} .
$$

2. (a) Let $y=\sum a_{n} x^{n}$. Then

$$
\begin{aligned}
y^{\prime \prime}-x y^{\prime}-y & =\sum(n+1)(n+2) a_{n+2} x^{n}-\sum n a_{n} x^{n}-\sum a_{n} x^{n} \\
& =\sum(n+1)\left((n+2) a_{n+2}-a_{n}\right) x^{n},
\end{aligned}
$$

and so $a_{n+2}=\frac{a_{n}}{n+2}$ is the recursion.
(b) We are given $a_{0}=1$ and $a_{1}=2$. It follows that

$$
a_{2}=\frac{a_{0}}{2}=\frac{1}{2}, \quad a_{3}=\frac{a_{1}}{3}=\frac{2}{3}, \quad a_{4}=\frac{a_{2}}{4}=\frac{1}{8}, \quad a_{5}=\frac{a_{3}}{5}=\frac{2}{15} .
$$

3. $\frac{d^{2} \theta}{d t^{2}}=\frac{d \omega}{d t}=\frac{d \omega}{d \theta} \frac{d \theta}{d t}=\frac{d \omega}{d \theta} \omega$.
(b) Separate variables and integrate to get $\omega^{2} / 2=K \cos \theta+C$.
4. $\mathcal{L}\left[y^{\prime \prime}(t)\right]=s^{2} Y(s)-s-2, \quad \mathcal{L}[y(t)]=Y(s)$ and

$$
\begin{aligned}
\mathcal{L}[g(t)] & =\int_{0}^{\infty} g(t) e^{-s t} d t=\int_{0}^{1}(1-t) e^{-s t} d t \\
& =\left.\frac{-(1-t) e^{-s t}}{s}\right|_{t=0} ^{1}-\frac{1}{s} \int_{0}^{1} e^{-s t} d t=\frac{1}{s}-\frac{1-e^{-s}}{s^{2}}
\end{aligned}
$$

Thus

$$
Y(s)=\frac{\frac{1}{s}-\frac{1-e^{-s}}{s^{2}}+s+2}{s^{2}-1}=\frac{s^{3}+2 s^{2}+s-1+e^{-s}}{s^{2}\left(s^{2}-1\right)}
$$

