- Please put your name, ID number, and section number (or time) on your blue book. If you fail to do this, you will probably get your exam back late.
- The first page of your blue book may contain notes. No other paper is allowed.
- You must show your work to receive credit.

1. (60 pts.) Determine if each of the following series is convergent or divergent. You must give correct reasons for your answers to receive credit.
(a) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n+3}}$
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\sqrt{n+3}}$
(c) $\sum_{n=1}^{\infty} \frac{n+2^{n}}{n 2^{n}}$
(d) $\sum_{n=0}^{\infty} \tan n$
(e) $\sum_{n=0}^{\infty} \frac{6^{2 n-3}}{3^{3 n+3}}$
(f) $\sum_{n=0}^{\infty} \frac{3^{3 n+3}}{6^{2 n-3}}$
2. (20 pts) Find the radius of convergence AND the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^{2}(x+3)^{n}}{2^{n}}$.
3. (20 pts.) Find the coefficients of x^{10} and x^{11} in the Taylor series for $(1+x) e^{-2 x^{2}}$ at $a=0$. You may leave powers and factorials in your answer; for example, $8!/ 3^{11}$ is a perfectly good form for an answer - but it is not the answer.

Hint: If you know the Taylor series for e^{x}, you can do this problem without computing derivatives of $(1+x) e^{-2 x^{2}}$.

