- 1. Often more than one test can be used, so several alternative solutions are be given.
 - (a) **Diverges**. Limit comparison test with $a_n = 1/n^{1/2}$, a divergent *p*-series. ($\lim_{n\to\infty} b_n/a_n = 1$) Also, integral test: $\int (x+3)^{-1/2} dx = 2(x+3)^{1/2} + C$.
 - (b) **Converges**. Alternating series test: signs alternate, terms go to zero, absolute values of terms decrease.
 - (c) **Diverges.** Limit comparison test with $a_n = 1/n$, a divergent *p*-series. $(\lim_{n\to\infty} b_n/a_n = 1)$ Also, rewrite terms as $2^{-n} + 1/n$. Since $\sum 2^{-n}$ converges (geometric series) and $\sum 1/n$ diverges (*p*-series), the sum of the two diverges.
 - (d) **Diverges**. The terms do not go to zero.
 - (e) **Diverges**. Ratio test: $a_{n+1}/a_n = 6^2/3^3 = 36/27 > 1$. Also root test, or geometric series $(r = 6^2/3^3 > 1)$, or the terms do not go to zero.
 - (f) **Converges.** Same reasoning as (e): The ratio tests give L = 27/36 and the geometric series has r = 27/36. (Terms go to zero, so the last test mentioned in (e) cannot be used.)
- 2. Use the root test or ratio test to find R:

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2 |x+3|}{2n^2} = \frac{|x+3|}{2}.$$

This gives convergence for |x + 3| < 2 and divergence for |x + 3| > 2. Thus R = 2. (Alternatively, you can do what I mentioned in class: Replace x + 3 with R and set L = 1: $1 = L = \lim \cdots = R/2$ and so R = 2.)

The endpoints of the interval are given by x + 3 = 2 and x + 3 = -2. The former gives the series $\sum n^2$ and the latter gives $\sum n^2(-1)^n$. Both diverge since the terms do not go to zero. Thus the interval of convergence is -5 < x < -1.

3. Since $e^x = \sum x^n/n!$, replacing x by $-2x^2$ gives

$$e^{-2x^2} = \sum_{n=0}^{\infty} \frac{(-2x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-2)^n x^{2n}}{n!}.$$

Multiply by 1 + x:

$$(1+x)e^{-2x^2} = \sum_{n=0}^{\infty} \frac{(-2)^n (x^{2n} + x^{2n+1})}{n!}$$

The coefficient of x^{10} comes from the n = 5 term in the sum. The coefficient is $(-2)^5/5! = -4/15$. This is also the coefficient of x^{11} .