1. Often more than one test can be used, so several alternative solutions are be given.
(a) Diverges. Limit comparison test with $a_{n}=1 / n^{1 / 2}$, a divergent p-series.
$\left(\lim _{n \rightarrow \infty} b_{n} / a_{n}=1\right)$
Also, integral test: $\int(x+3)^{-1 / 2} d x=2(x+3)^{1 / 2}+C$.
(b) Converges. Alternating series test: signs alternate, terms go to zero, absolute values of terms decrease.
(c) Diverges. Limit comparison test with $a_{n}=1 / n$, a divergent p-series.
$\left(\lim _{n \rightarrow \infty} b_{n} / a_{n}=1\right)$
Also, rewrite terms as $2^{-n}+1 / n$. Since $\sum 2^{-n}$ converges (geometric series) and $\sum 1 / n$ diverges (p-series), the sum of the two diverges.
(d) Diverges. The terms do not go to zero.
(e) Diverges. Ratio test: $a_{n+1} / a_{n}=6^{2} / 3^{3}=36 / 27>1$.

Also root test, or geometric series $\left(r=6^{2} / 3^{3}>1\right)$, or the terms do not go to zero.
(f) Converges. Same reasoning as (e): The ratio tests give $L=27 / 36$ and the geometric series has $r=27 / 36$. (Terms go to zero, so the last test mentioned in (e) cannot be used.)
2. Use the root test or ratio test to find R :

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}|x+3|}{2 n^{2}}=\frac{|x+3|}{2} .
$$

This gives convergence for $|x+3|<2$ and divergence for $|x+3|>2$. Thus $R=2$. (Alternatively, you can do what I mentioned in class: Replace $x+3$ with R and set $L=1: 1=L=\lim \cdots=R / 2$ and so $R=2$.)

The endpoints of the interval are given by $x+3=2$ and $x+3=-2$. The former gives the series $\sum n^{2}$ and the latter gives $\sum n^{2}(-1)^{n}$. Both diverge since the terms do not go to zero. Thus the interval of convergence is $-5<x<-1$.
3. Since $e^{x}=\sum x^{n} / n$!, replacing x by $-2 x^{2}$ gives

$$
e^{-2 x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-2 x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-2)^{n} x^{2 n}}{n!}
$$

Multiply by $1+x$:

$$
(1+x) e^{-2 x^{2}}=\sum_{n=0}^{\infty} \frac{(-2)^{n}\left(x^{2 n}+x^{2 n+1}\right)}{n!}
$$

The coefficient of x^{10} comes from the $n=5$ term in the sum. The coefficient is $(-2)^{5} / 5!=-4 / 15$. This is also the coefficient of x^{11}.

