1. (a) This can be made into an exact equation with the integrating factor e^{x}, but it is easier to separate variables:

$$
\int x e^{x} d x=-\int 2 y d y \quad \text { and so } \quad x e^{x}-e^{x}=-y^{2}+C
$$

where the first integral was done using the given formula with $a=n=1$. Putting in $x=0$ and $y=2$, we obtain $C=3$.
(b) This is a linear equation in $t(x): \quad x t^{\prime}(x)+t=3 x^{2}$. The integrating factor is 1 and so $x t=x^{3}+C$.
(c) This is exact since $\partial\left(y e^{x}\right) / \partial y=\partial\left(y+e^{x}\right) / \partial x$. Integrating gives $y^{2} / 2+y e^{x}=C$.
(d) The solution is $y(x)=0$ for all x. Why not separate variables? You can separate variables provided $y \neq 0$. If we ignore the condition and proceed, we obtain

$$
\int \frac{d y}{y^{2}}=\int 2 x d x
$$

and so $-1 / y=x^{2}+C$. Hence $y=\frac{-1}{x^{2}+C}$. Setting $x=y=0$, we obtain $0=-1 / C$, which is impossible. Thus $C=\infty$, a second mistake since C must be a real number. With two mistakes, we can obtain the correct answer, but not credit for the problem.
(e) The roots of the characteristic equation are -1 and 5 , so the general solution is $y=C_{1} e^{-t}+C_{2} e^{5 t}$.
(f) The roots of the characteristic equation are $2 \pm i$, so the general solution is $y=\left(C_{1} \cos t+C_{2} \sin t\right) e^{2 t}$. The initial conditions give $0=C_{1}$ and $1=2 C_{1}+C_{2}$. Thus the particular solution is $y=e^{2 t} \sin t$.
2. This problem can be done by solving the differential equation (separate variables). However, there is no need to do that much work.
(a) To find them, we solve $0=y-y^{3}$, obtaining $y=-1,0,1$ for the three equilibrium points.
(b) Since $\left(y-y^{3}\right)^{\prime}=1-3 y^{2}$, the function $y-y^{3}$ is decreasing at $y= \pm 1$ and increasing at $y=0$. Thus $y= \pm 1$ are stable and $y=0$ is unstable.
(c) The limit is 1 . Since $y(0)$ is between the unstable equilibrium $y=0$ and the stable equilibrium $y=1, y(t)$ will move toward $y=1$.

