1. In the standard notation, $p(x)=1 /(1-x)(1+x)^{2}$ and $q(x)=1 /(1+x)(1-x)^{2}$.
(a) Since $p(x)$ and $q(x)$ are okay except at $x= \pm 1$, these are the singular points. Regularity requires that $\left(x-x_{0}\right) p(x)$ and $\left(x-x_{0}\right)^{2} q(x)$ have power series at x_{0}. When $x_{0}=1$, they both have power series, so this point is regular. When $x_{0}=-1, p(x)$ does not have a power series so this point is irregular (or you can say "not regular").
(b) It converges: The power series for p and q about $x_{0}=0$ converge for $|x|<1$. By a theorem in the book, so does the power series for $y(x)$.
2. We have $\left(s^{2} Y(s)-s-2\right)+(Y(s)-1)=1 / s+2 /(s-1)$. Thus

$$
Y(s)=\frac{1 / s+2 /(s-1)+s+3}{s^{2}+1}=\frac{s^{3}+2 s^{2}-1}{s(s-1)\left(s^{2}+1\right)}
$$

3. Since the water level would rise 100 feet in 5 days, it is rising at the rate of 20 feet per day. This is the rate at which water is flowing in. Since it is flowing out at the rate of $5 h^{1 / 2}$ feet per day, the differential equation is $h^{\prime}=20-5 h^{1 / 2}$. The initial condition is $h(0)=0$.
4. (a) The equation is linear: $x y^{\prime}+2 y=3 x$. The integrating factor is x, so $\left(x^{2} y\right)^{\prime}=3 x^{2}$. Thus $x^{2} y=x^{3}+C$. Since $y(1)=2,1^{2} \times 2=1^{3}+C$ and so $C=1$. Hence $y=x+x^{-2}$.

Alternatively, the equation is homogeneous
(b) The equation is separable, so $\ln |y|=3 x-2 \ln |x|+C$. Since $y(1)=2, x y$ are positive and $\ln 2=3+C$. Hence $C=\ln 2-3$. One can exponentiate to get a nicer form: $y=2 e^{3 x-3} / x^{2}$.

Alternatively, the equation is linear.
(c) By undetermined coefficients, variation of parameters, or observation, $y=-t$ is a particular solution The homogeneous equation $y^{\prime \prime}-y=0$ has characteristic equation $r^{2}-1=0$ and so the general solution is $y=c_{1} e^{t}+c_{2} e^{-t}-t$. Using the initial conditions: $c_{1}+c_{2}=0$ and $c_{1}-c_{2}-1=0$. Thus $c_{1}=1 / 2$ and $c_{2}=-1 / 2$. The equation can also be solved by Laplace transforms: $s^{2} Y-Y=1 / s^{2}$. By algebra and partial fractions,

$$
Y=\frac{1}{s^{2}\left(s^{2}-1\right)}=\frac{1 / 2}{s-1}-\frac{1 / 2}{s+1}-\frac{1}{s^{2}}
$$

(d) The equation is homogeneous. Set $y=x v$ and $y^{\prime}=x v^{\prime}+v$ to obtain $x v^{\prime}+$ $v=1-v+v^{2}$. Thus $x v^{\prime}=(1-v)^{2}$. Separate variables and integrate to get $(1-v)^{-1}=\ln x+C$. Thus $(1-y / x)^{-1}=\ln x+C$. From the initial condition, $C=1$. You can solve for y if you wish: $y=x-x / \ln (e x)$.
5. We set $y_{2}=y_{1} v=x v$. Since $y_{2}^{\prime}=v+x v^{\prime}$ and $y^{\prime \prime}=2 v^{\prime}+x v^{\prime \prime}$,

$$
0=x^{3} y_{2}^{\prime \prime}+x y_{2}^{\prime}-y_{2}=\left(2 x^{3} v^{\prime}+x^{4} v^{\prime \prime}\right)+\left(x v+x^{2} v^{\prime}\right)-x v=x^{4} v^{\prime \prime}+\left(2 x^{3}+x^{2}\right) v^{\prime}
$$

Separating variables:

$$
\frac{d v^{\prime}}{v^{\prime}}=\frac{-(2 x+1) d x}{x^{2}}
$$

Thus a particular solution is $\ln v^{\prime}=-2 \ln x+1 / x^{2}$. Exponentiating: $v^{\prime}=x^{-2} e^{1 / x}$. Integrating: $v=-e^{1 / x}$. This gives $y_{2}=-x e^{1 / x}$ as an independent solution. (Since we can multiply by a constant, any solution of the form $y_{2}=c_{1} x e^{1 / x}+c_{2} x$ is acceptable if $c_{1} \neq 0$.
6. We set $y=\sum a_{n} x^{n}$, differentiate it twice, substitute into the equation, and look at the coefficient of x^{n} to obtain the recursion

$$
(n+2)(n+1) a_{n+2}-n(n-1) a_{n}+4(n+1) a_{n+1}+6 a_{n}=0 .
$$

Thus

$$
a_{0}=1, \quad a_{1}=-3, \quad \text { and } \quad a_{n+2}=\frac{\left(n^{2}-n-6\right) a_{n}-4(n+1) a_{n+1}}{(n+2)(n+1)} .
$$

With $n=0, a_{2}=3$. With $n=1, a_{3}=-1$. With $n=2, a_{4}=0$. With $n=3, a_{5}=0$. From now on $a_{n+2}=0$ since it depends only on the previous two values a_{n} and a_{n+1}.
7. (a) This is an Euler equation, so $y=x^{r}$ where $2 r(r-1)+3 r-1=0$. Thus $r=-1$ and $r=1 / 2$ and so the general solution is $y=c_{1} / x+c_{2} x^{1 / 2}$.
(b) Any method that produces a particular solution is acceptable. This includes using undetermined coefficients even though there is no reason that method should give a solution since undetermined coefficients is for constant coefficient linear equations.

The simplest approach is to note that, in solving Euler's equation, the left side is a function of r times x^{r}. Since we want to end up with x^{2}, we try $y=C x^{2}$ for a particular solution. Then we get $4 C x^{2}+6 C x^{2}-C x^{2}=9 x^{2}$. Hence $C=1$ and so the general solution is $y=c_{1} / x+c_{2} x^{1 / 2}+x^{2}$.

Alternatively, we can use the formula for variation of parameters (p.176). Note that we must divide the given equation by $2 x^{2}$ so that the coefficient of $y^{\prime \prime}$ is one. Thus $g(x)=9 / 2$. After some calculations, $W\left(y_{1}, y_{2}\right)=3 / 2\left(x^{3 / 2}\right)$ and $Y=x^{2}$.

Alternatively, you can use the trick I mentioned for converting an Euler equation to a constant coefficient equation: Set $\ln x=t$. The given equation becomes $2 d^{2} y / d t^{2}+d y / d t-y=9 e^{2 t}$. This can be solved in various ways. The general solution is $y=c_{1} e^{-t}+c_{2} e^{t / 2}+e^{2 t}$. Replace t with $\ln x$ to get the solution.

