- Please put your name, ID number, and section number (or time) on your blue book.
- The first page of your blue book may contain notes. No other paper is allowed.
- You must show your work to receive credit.
- "My calculator says ..." does NOT "show your work"!
- 1. (50 pts.) Determine if each of the following series is convergent or divergent. You must give correct reasons for your answers to receive credit.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$
 (b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ (c) $\sum_{n=0}^{\infty} \frac{n^9 + 100 \cos n}{\sqrt{n^3 + e^n}}$
(d) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ (e) $\sum_{n=1}^{\infty} \cos n$

- 2. (15 pts.) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence of numbers and consider the series $S = \sum_{n=1}^{\infty} (a_{n+2} a_n)$. Let S_N be the partial sum of the first N terms.
 - (a) Write out S_3 , S_4 , and S_5 in as simple terms as you can. Use these to deduce what S_N is for general N.
 - (b) Suppose $\lim_{n\to\infty} a_n$ exists and call the limit L. Show that S exists and obtain a simple formula for it. ("Simple formula" means a small finite expression involving possibly L and some a_i 's.)
- 3. (15 pts) Find the radius of convergence AND interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^2 2n}{3^n} (x 5)^n.$
- 4. (10 pts) Find the Taylor series for $\cos x$ at $a = \pi/4$. (You need not prove that $R_n(x) \to 0$.) Show your calculations!
- 5. (10 pts.) Let $f(x) = e^x \tan^{-1} x$. By Taylor's theorem, we know that

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + R_3(x),$$

where $R_3(x)$ goes to zero like x^4 as x goes to zero.

Find the coefficients c_0 , c_1 , c_2 , and c_3 . Show your calculations! *Hint*. If you multiply power series, you can avoid computing derivatives.

For your information, $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} \pm \cdots$.