1(a). $\sum \frac{(-1)^{n}}{n \ln n}$ converges: Alternating series whose terms decrease in magnitude.
1(b). $\sum \frac{1}{n \ln n}$ diverges: Integral test since $\int d x /(x \ln x)=\ln (\ln x)+C$.
1 (c). $\sum \frac{n^{9}+100 \cos n}{\sqrt{n^{3}+e^{n}}}$ converges: Easiest is ratio or root test since $a_{n+1} / a_{n} \rightarrow 1 / e^{1 / 2}$.
1(d). $\sum \frac{\ln n}{n^{2}}$ converges: Easiest may be comparison test with a p-series where $1<p<2$; for example $p=3 / 2$ works since $\ln n / n^{2}<1 / n^{3 / 2}$ is equivalent to $\ln n<n^{1 / 2}$ which is true for large n since $\ln n$ grows slower than any positive power of n.
1(e). $\sum \cos n$ diverges since the terms do not go to zero as $n \rightarrow \infty$.
2. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of numbers and consider the series
$S=\sum_{n=1}^{\infty}\left(a_{n+2}-a_{n}\right)$ Let S_{N} be the partial sum of the first N terms.
The general formula is $S_{N}=a_{N+2}+a_{N+1}-a_{2}-a_{1}$. Hence S exists if and only if $\lim a_{N+2}+a_{N+1}$ exists. This will exist if $\lim _{n \rightarrow \infty} a_{n}=L$ exists and then $S=2 L-a_{2}-a_{1}$.
Remark: $\lim a_{n}$ need not exist for S to exist. For example, if $a_{n}=(-1)^{n}$, then $L=0$ and $S=0$.
3. $\sum \frac{n^{2}-2 n}{3^{n}}(x-5)^{n}$: Using the ratio test, $\left|a_{n+1} / a_{n}\right| \rightarrow|x-5| / 3$. Hence $R=3$ and the ends of the interval are at $x-5= \pm 3$. At these values of x, the terms in the sum do not go to zero. Thus there is no convergence at the end points and so the interval is $(2,8)$.
4. Since $f(x)=\cos x$, we have $f^{\prime}(x)=-\sin x, f^{\prime \prime}(x)=-\cos x, f^{\prime \prime \prime}(x)=\sin x$, $f^{(4)}(x)=\cos x$, and so on (the functions repeat after four derivatives). Since $\cos (\pi / 4)=\sin (\pi / 4)=1 / \sqrt{2}$, the Taylor series is $\sum_{n=0}^{\infty} \frac{ \pm(x-\pi / 4)^{n}}{\sqrt{2} n!}$ where the sign pattern is +--+ repeating. You can leave it at that or say the sign is plus when division of n by 4 has a remainder of 0 or 3 and minus otherwise. I would not expect anyone to do so, but you can actually get a formula for the sign: $(-1)^{n(n+1) / 2}$.
5. Since $e^{x}=1+x+x^{2} / 2+x^{3} / 6+\cdots$ and $\tan ^{-1} x=x-x^{3} / 3+\cdots$, we can take the product and throw away all terms higher that cubic:

$$
\begin{aligned}
e^{x} \tan ^{-1} x & =\left(1+x+x^{2} / 2+x^{3} / 6\right)\left(x-x^{3} / 6\right)+\cdots \\
& =\left(1+x+x^{2} / 2\right) x-(1) x^{3} / 3+\cdots=x+x^{2}+x^{3} / 6+\cdots .
\end{aligned}
$$

Thus $c_{0}=0, c_{1}=1, c_{2}=1$, and $c_{3}=1 / 6$.

