1. (a) Separate variables: $\int e^{y} d y=\int-e^{-x} d x$ and so $e^{y}=e^{-x}+C$.
(b) Linear: $y^{\prime}+y / t=e^{t} / t$ (provided $t \neq 0$). Integrating factor is $\left.\exp \left(\int d t / t\right)\right)=t$. Thus $(t y)^{\prime}=e^{t}$ and so $t y=e^{t}+C$. Using the initial condition, $1 \times 1=e^{1}+C$, and so $C=1-e$. Finally

$$
t y=e^{t}+1-e
$$

Alternate solution: $\left(y-e^{t}\right)+t y^{\prime}=0$ is exact since $M=y-e^{t}$ and $N=t$ give $M_{y}=N_{x}$.
(c) Homogeneous: Let $y=x v$ so $d y=x d v+v d x$. The given equation becomes

$$
2 x^{2} v(x d v+v d x)+\left(x^{2}-x^{2} v^{2}\right)^{2} d x=0
$$

After some algebra we have $2 x v d v+\left(1+v^{2}\right) d x=0$. Separate variables and integrate:

$$
\int \frac{2 v d v}{1+v^{2}}=\int \frac{-d x}{x}
$$

and so

$$
\ln \left|1+v^{2}\right|=-\ln |x|+C ; \text { that is } \ln \left(1+y^{2} / x^{2}\right)+\ln |x|=C
$$

(Since $1+v^{2}>0$, the first absolute value in not needed.) One can do some algebra and get the simpler form $x^{2}+y^{2}=C x$. [If you think of x as a function of y, there's also the solution $x(y)=0$, but you're not expected to find that.]
Alternate solution: $\left(x^{2}-y^{2}\right)+2 x y y^{\prime}=0$ has an integrating factor depending only on x since $M=x^{2}-y^{2}$ and $N=2 x y$ give $\left(M_{y}-N_{x}\right) / N=-2 / x$. (The integrating factor is $\mu=x^{-2}$.)
(d) The characteristic equation is $r^{2}-3 r+2=0$, which has roots 1 and 2. Hence the general solution to the homogeneous equation is $y=C_{1} e^{t}+C_{2} e^{2 t}$. A particular solution to the nonhomogeneous equation can be found by undetermined coefficients. We try $y=a$. Substituting: $0+0+2 a=2$ and so $a=1$. (Actually, the particular solution is so simple, you may have found it just by looking at the equation.) Thus the general solution is

$$
y=C_{1} e^{t}+C_{2} e^{2 t}+1
$$

The initial conditions give $0=y(0)=C_{1}+C_{2}+1$ and $1=y^{\prime}(0)=C_{1}+2 C_{2}$. Solving these equations gives $C_{1}=-3$ and $C_{2}=2$. Hence we have

$$
y=1-3 e^{t}+2 e^{2 t}
$$

Alternate solution: Both this and (e) can be done by variation of parameters, but that would involve more work.
(e) This is the same equation as in (d). The initial conditions give $C_{1}=C_{2}=0$ and so $y=1$ is the solution.
2. (a) The general solution is

$$
y=C_{1} \cos (\omega t)+C_{2} \sin (\omega t) \text { or } y=C_{3} e^{i \omega t}+C_{4} e^{-i \omega t} .
$$

(b) It's easier to work with the trigonometric form. We have the two equations

$$
0=y(0)=C_{1} \quad \text { and } 0=y(1)=C_{1} \cos \omega+C_{2} \sin \omega .
$$

Thus $C_{1}=0$ and either $C_{2}=0$ or $\sin \omega=0$. Since we want a solution different from zero, we cannot have $C_{1}=C_{2}=0$ and so we must have $\sin \omega=0$. In other words, ω must be a multiple of π.

