- Please put your name, ID number, and section number (or time) on your blue book.
- The first page of your blue book may contain notes. No other paper is allowed.
- Calculators are NOT allowed.
- You must show your work to receive credit.
- 1. (20 pts) Consider the series  $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n+1}.$ 
  - (a) For what values of x is the series absolutely convergent? Your answer should be an interval for x; that is, an expression like  $a \le x < b$ , or a < x < b, etc.
  - (b) For what values of x is the series conditionally convergent?
- 2. (60 pts) Solve the following differential equations. If initial conditions are given, find the particular solution. If there are no initial conditions, find the general solution.

(a) 
$$y' = \frac{2x - y}{x + 1}$$
;  $y(0) = 2$ .

- (b)  $x^2y'' + 3xy' 3y = 0$ ; y(1) = 4, y'(1) = 0.
- (c)  $y'' 4y = 16 \ln t$ . You may leave integrals in your answer to (c).
- 3. (20 pts) Consider the differential equation  $y'(t) = \sin(y(t))$ .
  - (a) Find a <u>stable</u> equilibrium point for the equation.
  - (b) Find an <u>unstable</u> equilibrium point for the equation.
- 4. (20 pts) Find the first four nonzero terms of the series solution to the initial value problem

$$y'' - xy' - 2y = 0;$$
  $y(0) = 1,$   $y'(0) = 0.$ 

5. (20 pts) One solution of the differential equation

$$t^3y'' - ty' + y = 0$$

is y(t) = t. Use reduction of order to find the general solution when t > 0.

- 6. (15 pts) Find the singular points of  $x^2(1-x^2)y'' + y' + xy = 0$ . Determine which are regular and which are not.
- 7. (20 pts) Find the Laplace transform of the solution to

$$y'' - 2y' + y = g(t); \quad y(0) = 1, \quad y'(0) = 0,$$

where

$$g(t) = \begin{cases} 1 & \text{for } 0 \le t \le 2, \\ 0 & \text{otherwise.} \end{cases}$$