- 1. If |x-2| > 1, the series diverges since the terms do not go to zero.
 - If |x-2| < 1, the series converges absolutely by ratio test, or the root test or by comparison with the geometric series $\sum |x-2|^n$.
 - If x 2 = +1, the series is a divergent *p*-series.
 - If x 2 = -1, the series is alternating and converges since the terms decrease to zero.

Putting all this together:

conditional if and only if
$$x = 1$$
,
absolute if and only if $|x - 2| < 1$ that is, $1 < x < 3$.

2. (a) The equation is linear: $y' + \frac{1}{x+1}y = \frac{2x}{x+1}$. You can use the formula for a linear equation or do it from "scratch." I'll do the latter. The integrating factor is x+1 and so ((x+1)y)' = 2x. Thus $(x+1)y = x^2 + C$. Setting x = 0 and y = 2 gives C = 2. Thus $y = \frac{x^2+2}{x+1}$.

Alternatively, the equation written as (-2x + y)dx + (x + 1)dy = 0 is exact and one finds $-x^2 + xy + y = C$. The initial condition (x, y) = (0, 2) gives C = 2.

- (b) This is an Euler equation. Even if you don't recognize it as such, you should recognize it as having a regular singular point and use the same approach. We try a solution of the form $y = x^r$. This leads to the indicial equation r(r-1)+3r-3 = 0 which has solutions r = -3, 1. The general solution is $y = c_1 x^{-3} + c_2 x$. From the initial conditions, $c_1 + c_2 = 4$ and $-3c_1 + c_2 = 0$. Solving: $c_1 = 1$ and $c_2 = 3$. Thus we have $y = x^{-3} + 3x$.
- (c) The homogeneous equation is y''-4y = 0. The characteristic equation is $r^2-4 = 0$ and so two independent solutions are $y_1 = e^{2t}$ and $y_2 = e^{-2t}$. Now we use variation of parameters. The Wronskian is $W(y_1, y_2) = -4$. By the formula for variation of parameters, a particular solution is

$$Y(t) = e^{2t} \int 4e^{-2t} \ln t \, dt - e^{-2t} \int 4e^{2t} \ln t \, dt.$$

The general solution is $Y(t) + c_1 e^{2t} + c_2 e^{-2t}$.

- 3. The equilibrium points occur when $y = n\pi$ for some integer n. An equilibrium point of y' = f(y) is stable when f' < 0 and unstable when f' > 0, so the unstable points are $y = 2n\pi$ and the stable ones are $y = (2n + 1)\pi$. You were asked to find one of each.
- 4. Setting $y(x) = \sum a_n x^n$, we obtain

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - \sum_{n=0}^{\infty} na_n x^n - \sum_{n=0}^{\infty} 2a_n x^n = 0,$$

12/16/99

which gives the recurrence relation $a_{n+2} = a_n/(n+1)$ for $n \ge 0$. From the initial conditions, $a_0 = 1$ and $a_1 = 0$. You can work out the required nonzero terms. I'll get the general term. Since $a_1 = 0$, the recurrence gives $a_n = 0$ for all odd n. For n = 2k,

$$a_{2k} = \frac{a_{2k-2}}{2k-1} = \frac{a_{2k-4}}{(2k-1)(2k-3)} = \dots = \frac{1}{(2k-1)(2k-3)\cdots 3\cdot 1}$$

5. Let y(t) = tv(t). Then y' = tv' + v and y'' = tv'' + 2v'. Substitution and a bit of calculation gives

$$t^4v'' + (2t^3 - t^2)v' = 0$$
 whence $\frac{dv'}{v'} = \frac{(-2t^3 + t^2)dt}{t^4}$

After integration, $\ln |v'| = -2 \ln t - 1/t + C$. Exponentiating and choosing a convenient value for C:

$$v' = t^{-2}e^{-1/t}$$
 whence $v = e^{-1/t}$,

by, for example, the substitution -1/t = w to get $dw = dt/t^2$. Thus the general solution is $c_1t + c_2te^{-1/t}$.

- 6. Since $x^2(1-x^2) = 0$ if and only if $x = 0, \pm 1$, these are the singular points. The point x = 0 is irregular because xQ(x)/P(x) does not have a power series at x = 0. The other two are regular; e.g., for x = 1, both (x 1)Q(x)/P(x) and $(x 1)^2R(x)/P(x)$ have power series at x = 1.
- 7. Let Y(s) be the Laplace transform of y(t). From the table,

$$\mathcal{L}\{y'\} = sY - f(0) = sY - 1 \text{ and} \mathcal{L}\{y''\} = s^2Y - sf'(0) - sf(0) = s^2Y - s.$$

What about $\mathcal{L}\{g(t)\}$? Many people forgot the definiton of the Laplace transform: $\mathcal{L}\{g(t)\} = \int_0^\infty e^{-st}g(t) dt$. Hence

$$\mathcal{L}\{g(t)\} = \int_0^2 e^{-st} dt + \int_2^\infty 0 dt = -e^{-st}/s \Big|_{t=0}^{t=2} = \frac{1 - e^{-2s}}{s}.$$

Hence

$$s^{2}Y - s - 2(sY - 1) + Y = \frac{1 - e^{-2s}}{s}$$

Solving for Y, we get

$$Y = \frac{s - 2 + (1 - e^{-2s})/s}{s^2 - 2s + 1} = \frac{(s - 1)^2 - e^{-2s}}{s(s - 1)^2} = \frac{1}{s} - \frac{1}{s(s - 1)^2 e^{2s}},$$

or any of a variety of equivalent forms.