1. - If $|x-2|>1$, the series diverges since the terms do not go to zero.

- If $|x-2|<1$, the series converges absolutely by ratio test, or the root test or by comparison with the geometric series $\sum|x-2|^{n}$.
- If $x-2=+1$, the series is a divergent p-series.
- If $x-2=-1$, the series is alternating and converges since the terms decrease to zero.
Putting all this together:

$$
\begin{aligned}
& \text { conditional if and only if } x=1 \\
& \text { absolute if and only if }|x-2|<1 \text { that is, } 1<x<3 .
\end{aligned}
$$

2. (a) The equation is linear: $y^{\prime}+\frac{1}{x+1} y=\frac{2 x}{x+1}$. You can use the formula for a linear equation or do it from "scratch." I'll do the latter. The integrating factor is $x+1$ and so $((x+1) y)^{\prime}=2 x$. Thus $(x+1) y=x^{2}+C$. Setting $x=0$ and $y=2$ gives $C=2$. Thus $y=\frac{x^{2}+2}{x+1}$.
Alternatively, the equation written as $(-2 x+y) d x+(x+1) d y=0$ is exact and one finds $-x^{2}+x y+y=C$. The initial condition $(x, y)=(0,2)$ gives $C=2$.
(b) This is an Euler equation. Even if you don't recognize it as such, you should recognize it as having a regular singular point and use the same approach. We try a solution of the form $y=x^{r}$. This leads to the indicial equation $r(r-1)+3 r-3=$ 0 which has solutions $r=-3,1$. The general solution is $y=c_{1} x^{-3}+c_{2} x$. From the initial conditions, $c_{1}+c_{2}=4$ and $-3 c_{1}+c_{2}=0$. Solving: $c_{1}=1$ and $c_{2}=3$. Thus we have $y=x^{-3}+3 x$.
(c) The homogeneous equation is $y^{\prime \prime}-4 y=0$. The characteristic equation is $r^{2}-4=0$ and so two independent solutions are $y_{1}=e^{2 t}$ and $y_{2}=e^{-2 t}$. Now we use variation of parameters. The Wronskian is $W\left(y_{1}, y_{2}\right)=-4$. By the formula for variation of parameters, a particular solution is

$$
Y(t)=e^{2 t} \int 4 e^{-2 t} \ln t d t-e^{-2 t} \int 4 e^{2 t} \ln t d t
$$

The general solution is $Y(t)+c_{1} e^{2 t}+c_{2} e^{-2 t}$.
3. The equilibrium points occur when $y=n \pi$ for some integer n. An equilibrium point of $y^{\prime}=f(y)$ is stable when $f^{\prime}<0$ and unstable when $f^{\prime}>0$, so the unstable points are $y=2 n \pi$ and the stable ones are $y=(2 n+1) \pi$. You were asked to find one of each.
4. Setting $y(x)=\sum a_{n} x^{n}$, we obtain

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

which gives the recurrence relation $a_{n+2}=a_{n} /(n+1)$ for $n \geq 0$. From the initial conditions, $a_{0}=1$ and $a_{1}=0$. You can work out the required nonzero terms. I'll get the general term. Since $a_{1}=0$, the recurrence gives $a_{n}=0$ for all odd n. For $n=2 k$,

$$
a_{2 k}=\frac{a_{2 k-2}}{2 k-1}=\frac{a_{2 k-4}}{(2 k-1)(2 k-3)}=\cdots=\frac{1}{(2 k-1)(2 k-3) \cdots 3 \cdot 1} .
$$

5. Let $y(t)=t v(t)$. Then $y^{\prime}=t v^{\prime}+v$ and $y^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}$. Substitution and a bit of calculation gives

$$
t^{4} v^{\prime \prime}+\left(2 t^{3}-t^{2}\right) v^{\prime}=0 \quad \text { whence } \quad \frac{d v^{\prime}}{v^{\prime}}=\frac{\left(-2 t^{3}+t^{2}\right) d t}{t^{4}}
$$

After integration, $\ln \left|v^{\prime}\right|=-2 \ln t-1 / t+C$. Exponentiating and choosing a convenient value for C :

$$
v^{\prime}=t^{-2} e^{-1 / t} \quad \text { whence } \quad v=e^{-1 / t}
$$

by, for example, the substitution $-1 / t=w$ to get $d w=d t / t^{2}$. Thus the general solution is $c_{1} t+c_{2} t e^{-1 / t}$.
6. Since $x^{2}\left(1-x^{2}\right)=0$ if and only if $x=0, \pm 1$, these are the singular points. The point $x=0$ is irregular because $x Q(x) / P(x)$ does not have a power series at $x=0$. The other two are regular; e.g., for $x=1$, both $(x-1) Q(x) / P(x)$ and $(x-1)^{2} R(x) / P(x)$ have power series at $x=1$.
7. Let $Y(s)$ be the Laplace transform of $y(t)$. From the table,

$$
\mathcal{L}\left\{y^{\prime}\right\}=s Y-f(0)=s Y-1 \quad \text { and } \mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} Y-s f^{\prime}(0)-s f(0)=s^{2} Y-s
$$

What about $\mathcal{L}\{g(t)\}$? Many people forgot the definiton of the Laplace transform: $\mathcal{L}\{g(t)\}=\int_{0}^{\infty} e^{-s t} g(t) d t$. Hence

$$
\mathcal{L}\{g(t)\}=\int_{0}^{2} e^{-s t} d t+\int_{2}^{\infty} 0 d t=-e^{-s t} /\left.s\right|_{t=0} ^{t=2}=\frac{1-e^{-2 s}}{s}
$$

Hence

$$
s^{2} Y-s-2(s Y-1)+Y=\frac{1-e^{-2 s}}{s}
$$

Solving for Y, we get

$$
Y=\frac{s-2+\left(1-e^{-2 s}\right) / s}{s^{2}-2 s+1}=\frac{(s-1)^{2}-e^{-2 s}}{s(s-1)^{2}}=\frac{1}{s}-\frac{1}{s(s-1)^{2} e^{2 s}}
$$

or any of a variety of equivalent forms.

