- Print Name, ID number and Section on your blue book.
- BOOKS and CALCULATORS are NOT allowed. One side of one page of NOTES is allowed.
- You must show your work to receive credit.
- Hint: In some cases, short cuts can reduce computation.

1. (24 points) Let $\mathbf{F}=\left(x^{2}+y^{2}\right) \mathbf{i}+z \mathbf{j}+z \mathbf{k}$, and $f=x y z$. In each case, either compute the requested item or briefly explain why it makes no sense.
(a) the curl of f
(b) the divergence of f
(c) $(\mathbf{F} \times \nabla f) \cdot \mathbf{F}$
(d) $f \times \mathbf{F}$
(e) the divergence of \mathbf{F}
(f) $(\mathbf{F} \times \mathbf{F}) \times \mathbf{F}$
2. (9 points) For each of the following regions, answer the following questions:
(i) Is it open?
(ii) Is it connected?
(iii) Is it simply connected?

You do not need to explain your answers.

(a) The set of points (x, y, z) with $x^{2}+y^{2}+z^{2}<2$ and $x^{2}+y^{2}>1$.
(b) The set of points (x, y, z) with $x^{2}+y^{2}<2$ and $x^{2}+y^{2}+z^{2}>1$.
(c) The set of points (x, y) with $|x| \geq 1$.
3. (5 points) Prove or disprove: The vector field defined by $\mathbf{F}=x y z \mathbf{i}+x z \mathbf{j}+y \mathbf{k}$ for all (x, y, z) is conservative.
4. (5 points) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ where $\mathbf{F}=x \mathbf{i}+x y \mathbf{j}$ and C is the straight line segment from the point with position vector $\mathbf{P}=(1,1,0)$ to the point with position vector $\mathbf{Q}=(0,2,1)$.
5. (5 points) Let $f(x, y, z)=\tan \left(\sin \left(x e^{y}\right)+z^{2}\right)$ and let $\mathbf{F}=\nabla f$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ where C is the closed curve given by $(x, y, z)=\left(\cos t, \sin t, e^{t} \sin t\right), 0 \leq t \leq 2 \pi$.

