1. Since curl, divergence and cross product require that the functions be vectors, (a), (b) and (d) make no sense.
(c) zero since the cross product is perpendicular to \mathbf{F} and the dot product of perpendicular vectors is zero.
(e) $\nabla \cdot \mathbf{F}=2 x+0+1=2 x+1$.
(f) zero since the cross product of a vector with itself is zero.
2. (a) is a ball with a circular hole. It is open and connected but not simply connected. (b) is a cylinder with a ball removed. It is open, connected and simply connected.
(c) is the $x y$-plane with the vertical strip $-1<x<1$ removed. It is not open, not connected and (therefore) not simply connected.
3. We could try to find f with $\nabla f=\mathbf{F}$, but first we should check the equations $\partial F_{1} / \partial y=$ $\partial F_{2} / \partial x \partial F_{1} / \partial z=\partial F_{3} / \partial x$ and $\partial F_{2} / \partial z=\partial F_{3} / \partial y$. Since they fail, the vector field is not conservative.
4. We can parameterize the line segment by $\mathbf{R}=t \mathbf{Q}+(1-t) \mathbf{P}=(1-t, 1+t, t)$ for $0 \leq t \leq 1$. Then $d \mathbf{R} / d t=(-1,1,1)$ and $\mathbf{F}(\mathbf{R})=\left(1-t, 1-t^{2}, 0\right)$. Thus the answer is

$$
\int_{0}^{1}\left(1-t, 1-t^{2}, 0\right) \cdot(-1,1,1) d t=\int_{0}^{1}\left((t-1)+\left(1-t^{2}\right)\right) d t=1^{2} / 2-1^{3} / 3=1 / 6
$$

5. Since the field is conservative and we are integrating around a closed curve, the integral is zero.
