1. There may be other answers than these
(a) gradient, scalar OR gradient, potential OR curl, solenoidal
(b) 0
(c) harmonic
(d) gradient, curl OR irrotational function, solenoidal function OR gradient of a scalar potential, curl of a vector potential
2. First solution: Use the divergence theorem and $\nabla \cdot \nabla \times \mathbf{F}=0$.

Second solution: Use Stokes' Theorem. Since we are integrating over a closed surface, there is no boundary and so the integral is zero.
3. Since \mathbf{F} is defined everywhere, we can take the domain to be all of 3-space and $\mathbf{R}_{0}=\mathbf{0}$.
(a) Since \mathbf{F} is homogenous of degree 2, the supplementary homework tells us that

$$
\mathbf{G}=\frac{12}{2+2}\left(2 x z \mathbf{i}-z^{2} \mathbf{k}\right) \times \mathbf{R}=3\left(y z^{2} \mathbf{i}-3 x z^{2} \mathbf{j}+2 x y z \mathbf{k}\right)
$$

Another way to solve it is to compute the integral in the text:

$$
\begin{aligned}
\mathbf{G} & =\int_{0}^{1} t\left(24 x z t^{2} \mathbf{i}-12 z^{2} t^{2} \mathbf{k}\right) \times \mathbf{R} d t=\int_{0}^{1} t\left(12 y z^{2} t^{2} \mathbf{i}-36 x z^{2} t^{2} \mathbf{j}+24 x y z t^{2} \mathbf{k}\right) d t \\
& =3 y z^{2} \mathbf{i}-9 x z^{2} \mathbf{j}+6 x y z \mathbf{k}
\end{aligned}
$$

(b) We can add the gradient of any function to \mathbf{G} without changing its curl. We need ϕ such that $(\mathbf{G}+\nabla \phi) \cdot \mathbf{k}=0$. The general solution to this is $\phi=-3 x y z^{2}+f(x, y)$. For simplicity, I took $f=0$, but you could make another choice. This gave me $\mathbf{G}+\nabla \phi=-12 x z^{2} \mathbf{j}$.
4. Looking at the given equations for D, we see that, in terms of u and v, it is the square

$$
R=\{(u, v) \mid-1 \leq u \leq 1 \text { and }-1 \leq v \leq 1\} .
$$

We have

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|=-2
$$

Since $\frac{\partial(x, y)}{\partial(u, v)} \frac{\partial(x, y)}{\partial(u, v)}=1$, we have $\partial(x, y) / \partial(u, v)=1 /-2=-1 / 2$. Alternatively, you could express x, y in terms of u, v and compute $\partial(x, y) / \partial(u, v)$ directly. The answer can be written in various ways:

$$
\iint_{R} v^{2} e^{u v}\left|\frac{-1}{2}\right| d A=\frac{1}{2} \iint_{R} v^{2} e^{u v} d u d v=\frac{1}{2} \int_{-1}^{1} \int_{-1}^{1} v^{2} e^{u v} d u d v
$$

Aside: to evaluate the integral, use $\int t e^{a t} d t=\frac{1}{a} t e^{a t}-\frac{1}{a^{2}} e^{a t}+C$ and write

$$
\begin{aligned}
& 2 \int_{-1}^{1} \int_{-1}^{1} v^{2} e^{u v} d u d v=\left.2 \int_{-1}^{1} v e^{u v}\right|_{u=-1} ^{u=1} d v=2 \int_{-1}^{1}\left(v e^{v}-v e^{-v}\right) d v \\
& \quad=\left.2\left(v e^{v}-e^{v}+v e^{-v}+e^{-v}\right)\right|_{v=-1} ^{v=1}=2\left(e^{-1}+e^{-1}\right)-2\left(-e^{-1}-e^{-1}\right)=8 / e
\end{aligned}
$$

