- Print Name, ID number and Section on your blue book.
- BOOKS and CALCULATORS are NOT allowed.

Both sides of one page of NOTES is allowed.

- You must show your work to receive credit.

1. (12 points) Given that $\mathbf{A} \times \mathbf{B} \neq \mathbf{0}$, explain why the three vectors

$$
\frac{\mathbf{A}}{|\mathbf{A}|}, \quad \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} \quad \text { and } \quad \frac{(\mathbf{A} \times \mathbf{B}) \times \mathbf{A}}{|\mathbf{A} \times \mathbf{B}||\mathbf{A}|}
$$

are mutually orthogonal (i.e. mutually perpendicular) unit vectors.
2. (12 points) A surface is given by

$$
\mathbf{R}=u \cos v \mathbf{i}-u \sin v \mathbf{j}+\left(4-u^{2}\right) \mathbf{k} \text { for } 0 \leq u \leq 2 \text { and }|v| \leq \pi
$$

(Note the minus sign on the \mathbf{j} component.) Compute a unit normal to the surface such that the \mathbf{k} component is positive.
3. (12 points) Find the value of the line integral

$$
\int_{C}\left[(3 x+4 y) d x+\left(2 x+3 y^{2}\right) d y\right]
$$

where C is the circle $x^{2}+y^{2}=4$ traversed counterclockwise, that is, in the usual direction.
4. (12 points) Suppose that $\nabla \times \mathbf{H}=\mathbf{F} \times \mathbf{R}$. Prove that the curl of \mathbf{F} is perpendicular to \mathbf{R}; that is, their dot product is zero.
Some identities: $\nabla \times(\mathbf{F} \times \mathbf{G})=(\mathbf{G} \cdot \nabla) \mathbf{F}+(\nabla \cdot \mathbf{G}) \mathbf{F}-((\mathbf{F} \cdot \nabla) \mathbf{G}+(\nabla \cdot \mathbf{F}) \mathbf{G})$, $\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G}), \quad \nabla\left(x^{2}+y^{2}+z^{2}\right) / 2=\mathbf{R}$.
5. (12 points) When S is a surface with no boundary, Stokes' Theorem becomes

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=0
$$

Use the Divergence Theorem to prove Stokes'Theorem in this case.
6. (12 points) Suppose that $\mathbf{F}(\mathbf{R})$ is defined for all \mathbf{R} and that $\nabla \cdot \mathbf{F}(\mathbf{R})=0$ for all \mathbf{R}. Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the $x y$-plane and let \mathbf{n} be the unit normal pointing outward from the sphere. Prove that

$$
\iint_{S} \mathbf{F}(\mathbf{R}) \cdot \mathbf{n} d S=\int_{0}^{2 \pi} \int_{0}^{2} r F_{3}(r \cos \theta, r \sin \theta, 0) d r d \theta
$$

where $\mathbf{F}=F_{1}(x, y, z) \mathbf{i}+F_{2}(x, y, z) \mathbf{j}+F_{3}(x, y, z) \mathbf{k}$.
Suggestion: Use the Divergence Theorem or Stokes' Theorem to change the integration to a surface with $z=0$. (Either one, properly used, will work.)
7. (12 points) Suppose $\mathbf{F}=\nabla \phi+\nabla \times \mathbf{G}$ in the domain $|\mathbf{R}|<1$ and that $h(\mathbf{R})$ is a harmonic function for $|\mathbf{R}|<1$. Let $\psi=\phi-h$. Derive a formula for \mathbf{H} so that $\mathbf{F}=\nabla \psi+\nabla \times \mathbf{H}$ for $|\mathbf{R}|<1$. The correct answer will include an integral over a single variable, but not an integral over a volume or a surface. You may leave that integral in your answer.

Suggestion: To start, equate the two expressions for \mathbf{F} and rearrange.
Be sure to indicate where you need the fact that h is HARMONIC.
8. (12 points) In integral calculus, it was proved that, if S is an interval on the real axis that is symmetric about 0 and F is odd on S, then $\int_{S} F(x) d x=0$. The goal of this exercise is to prove a similar theorem for line integrals.

A set S is symmetric about $\mathbf{0}$ if $\mathbf{R} \in S$ if and only if $-\mathbf{R} \in S$. A scalar or vector function F is $\left\{\begin{array}{c}\text { even } \\ \text { odd }\end{array}\right\}$ on a set S if $F(-\mathbf{R})=\left\{\begin{array}{c}+F(\mathbf{R}) \\ -F(\mathbf{R})\end{array}\right\}$ for all $\mathbf{R} \in S$. Recall that a regular curve does not cross itself.

Let C be a regular curve symmetric about $\mathbf{0}$.

Fact (No need to prove it.): Such a curve C can be broken into two curves C_{1} and C_{2} such that $\mathbf{R} \in C_{1}$ if and only if $-\mathbf{R} \in C_{2}$. Furthermore, if $\mathbf{0} \notin C$, then the curve is closed.

Using this fact or otherwise, prove:
(a) If $\mathbf{0} \in C$ and \mathbf{F} is odd on C, then $\int_{C} \mathbf{F} \cdot d \mathbf{R}=0$.
(b) If $\mathbf{0} \notin C$ and \mathbf{F} is even on C, then $\int_{C} \mathbf{F} \cdot d \mathbf{R}=0$.

Remark: Drawing a picture for a simple case may help you see what is going on.
In (a), the picture could be a line segment like $\{(t, t) \mid-1 \leq t \leq 1\}$.
In (b), the picture could be a circle centered at the origin.

