- Print Name, ID number and Section on your blue book.
- BOOKS and CALCULATORS are NOT allowed. Both sides of one page of NOTES is allowed.
- You must show your work to receive credit.
- 1. (12 points) Given that $\mathbf{A} \times \mathbf{B} \neq \mathbf{0}$, explain why the three vectors

$$\frac{\mathbf{A}}{|\mathbf{A}|}, \quad \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} \quad \text{and} \quad \frac{(\mathbf{A} \times \mathbf{B}) \times \mathbf{A}}{|\mathbf{A} \times \mathbf{B}| \ |\mathbf{A}|}$$

are mutually orthogonal (i.e. mutually perpendicular) <u>unit</u> vectors.

2. (12 points) A surface is given by

 $\mathbf{R} = u \cos v \, \mathbf{i} - u \sin v \, \mathbf{j} + (4 - u^2) \mathbf{k} \quad \text{for } 0 \le u \le 2 \text{ and } |v| \le \pi.$

(Note the minus sign on the ${\bf j}$ component.) Compute a unit normal to the surface such that the ${\bf k}$ component is positive.

3. (12 points) Find the value of the line integral

$$\int_C \left[(3x+4y)dx + (2x+3y^2)dy \right]$$

where C is the circle $x^2 + y^2 = 4$ traversed counterclockwise, that is, in the usual direction.

4. (12 points) Suppose that $\nabla \times \mathbf{H} = \mathbf{F} \times \mathbf{R}$. Prove that the curl of \mathbf{F} is perpendicular to \mathbf{R} ; that is, their dot product is zero.

Some identities: $\nabla \times (\mathbf{F} \times \mathbf{G}) = (\mathbf{G} \cdot \nabla)\mathbf{F} + (\nabla \cdot \mathbf{G})\mathbf{F} - ((\mathbf{F} \cdot \nabla)\mathbf{G} + (\nabla \cdot \mathbf{F})\mathbf{G}),$ $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G}),$ $\nabla (x^2 + y^2 + z^2)/2 = \mathbf{R}.$

5. (12 points) When S is a surface with no boundary, Stokes' Theorem becomes

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0.$$

Use the Divergence Theorem to prove Stokes'Theorem in this case.

THERE ARE MORE PROBLEMS

6. (12 points) Suppose that $\mathbf{F}(\mathbf{R})$ is defined for all \mathbf{R} and that $\nabla \cdot \mathbf{F}(\mathbf{R}) = 0$ for all \mathbf{R} . Let S be the portion of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the xy-plane and let \mathbf{n} be the unit normal pointing outward from the sphere. Prove that

$$\iint_{S} \mathbf{F}(\mathbf{R}) \cdot \mathbf{n} \, dS = \int_{0}^{2\pi} \int_{0}^{2} r F_{3}(r \cos \theta, r \sin \theta, 0) \, dr \, d\theta,$$

where $\mathbf{F} = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$.

Suggestion: Use the Divergence Theorem or Stokes' Theorem to change the integration to a surface with z = 0. (Either one, properly used, will work.)

7. (12 points) Suppose $\mathbf{F} = \nabla \phi + \nabla \times \mathbf{G}$ in the domain $|\mathbf{R}| < 1$ and that $h(\mathbf{R})$ is a harmonic function for $|\mathbf{R}| < 1$. Let $\psi = \phi - h$. Derive a formula for \mathbf{H} so that $\mathbf{F} = \nabla \psi + \nabla \times \mathbf{H}$ for $|\mathbf{R}| < 1$. The correct answer will include an integral over a single variable, but not an integral over a volume or a surface. You may leave that integral in your answer.

Suggestion: To start, equate the two expressions for \mathbf{F} and rearrange.

Be sure to indicate where you need the fact that h is HARMONIC.

8. (12 points) In integral calculus, it was proved that, if S is an interval on the real axis that is symmetric about 0 and F is odd on S, then $\int_S F(x) dx = 0$. The goal of this exercise is to prove a similar theorem for line integrals.

A set S is symmetric about **0** if $\mathbf{R} \in S$ if and only if $-\mathbf{R} \in S$. A scalar or vector function F is $\begin{cases} \text{even} \\ \text{odd} \end{cases}$ on a set S if $F(-\mathbf{R}) = \begin{cases} +F(\mathbf{R}) \\ -F(\mathbf{R}) \end{cases}$ for all $\mathbf{R} \in S$. Recall that a regular curve does not cross itself.

Let C be a regular curve symmetric about **0**.

Fact (No need to prove it.): Such a curve C can be broken into two curves C_1 and C_2 such that $\mathbf{R} \in C_1$ if and only if $-\mathbf{R} \in C_2$. Furthermore, if $\mathbf{0} \notin C$, then the curve is closed.

Using this fact or otherwise, prove:

(a) If
$$\mathbf{0} \in C$$
 and \mathbf{F} is odd on C , then $\int_C \mathbf{F} \cdot d\mathbf{R} = 0$.
(b) If $\mathbf{0} \notin C$ and \mathbf{F} is even on C , then $\int_C \mathbf{F} \cdot d\mathbf{R} = 0$.

Remark: Drawing a picture for a simple case may help you see what is going on. In (a), the picture could be a line segment like $\{(t,t) \mid -1 \leq t \leq 1\}$. In (b), the picture could be a circle centered at the origin.

END OF EXAM