Final Exam Solutions

- 1. Let $\mathbf{C} = \mathbf{A} \times \mathbf{B}$. By the definition of the cross product, \mathbf{C} is perpendicular to \mathbf{A} and $\mathbf{C} \times \mathbf{A}$ is perpendicular to \mathbf{C} and \mathbf{A} . Since the length of a cross product of two perpendicular vectors is the product of their lengths, $|\mathbf{C} \times \mathbf{A}| = |\mathbf{C}| |\mathbf{A}|$.
- 2. Since $\partial \mathbf{R}/\partial u = \cos v \mathbf{i} \sin v \mathbf{j} 2u \mathbf{k}$ and $\partial \mathbf{R}/\partial v = -u \sin v \mathbf{i} u \cos \mathbf{j}$, we have the normal

$$\mathbf{N} = \frac{\partial \mathbf{R}}{\partial u} \times \frac{\partial \mathbf{R}}{\partial v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & -\sin v & -2u \\ -u\sin v & -u\cos v & 0 \end{vmatrix} = -2u^2 \cos v \mathbf{i} + 2u^2 \sin v \mathbf{j} - u \mathbf{k}.$$

Since $|\mathbf{N}| = \sqrt{4u^4 \cos^2 v + 4u^4 \sin^2 v + u^2} = |u|\sqrt{4u^2 + 1}$ and $u \ge 0$, the desired answer is $-\mathbf{N} = 2u \cos v \mathbf{i} = 2u \sin v \mathbf{j} \qquad \mathbf{k}$

$$\frac{1}{|\mathbf{N}|} = \frac{2u\cos(1)}{\sqrt{4u^2 + 1}} - \frac{2u\sin(1)}{\sqrt{4u^2 + 1}} + \frac{\mathbf{R}}{\sqrt{4u^2 + 1}}.$$

- 3. This is assigned homework problem Section 4.1 number 4.
- 4. Since div curl is zero, $0 = \nabla \cdot (\nabla \times \mathbf{H}) = \nabla \cdot (\mathbf{F} \times \mathbf{R})$. Use the identity $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) \mathbf{F} \cdot (\nabla \times \mathbf{G})$ with \mathbf{H} replaced by \mathbf{R} to get

$$0 = \mathbf{R} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{R}) = \mathbf{R} \cdot (\nabla \times \mathbf{F}),$$

where the last equality comes from $\nabla \times \mathbf{R} = \mathbf{0}$.

You may know or have on your sheet $\nabla \times \mathbf{R} = \mathbf{0}$, or you could compute $\nabla \times \mathbf{R}$ to get $\mathbf{0}$, or you might note that \mathbf{R} is the gradient of $(x^2 + y^2 + z^2)/2$ and that curl grad is zero.

5. Let V be the region enclosed by S. By the Divergence Theorem

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iiint_{V} \nabla \cdot (\nabla \times \mathbf{F}) \, dV,$$

which is zero since div curl is zero.

6. By the Divergence Theorem, the integral over the closed surface consisting of S and the disk D in the xy-plane with boundary $x^2 + y^2 = 4$ is zero:

$$\iint_{S} \mathbf{F}(\mathbf{R}) \cdot \mathbf{n} \, dS + \iint_{D} \mathbf{F}(\mathbf{R}) \cdot (-\mathbf{k}) \, dx \, dy = 0.$$

June 2004

(In the second integral, the normal is $-\mathbf{k}$, not \mathbf{k} since it must point outward.) Rearranging and changing to polar coordinates $(x = r \cos \theta, y = r \sin \theta)$ gives the answer since

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & r\cos\theta \end{vmatrix} = r.$$

Alternatively, since $\nabla \cdot \mathbf{F} = 0$ for all \mathbf{R} , we can write $\mathbf{F} = \nabla \times \mathbf{G}$ for some \mathbf{G} . Now Stokes' Theorem tells us that integrating $\nabla \times \mathbf{G} \cdot d\mathbf{S}$ over a surface depends only on the boundary, not the surface. Hence we can change the surface to the interior of $x^2 + y^2 = 4$ in the *xy*-plane. This gives

$$\iint_{S} \mathbf{F}(\mathbf{R}) \cdot \mathbf{n} \, dS = \iint_{D} \mathbf{F}(\mathbf{R}) \cdot \mathbf{k} \, dx \, dy$$

Change coordinates as before.

7. We have

$$\mathbf{F} = \nabla \phi + \nabla \times \mathbf{G}$$
 and $\mathbf{F} = \nabla (\phi - h) + \nabla \times \mathbf{H}$

Equating and rearranging, we have $\nabla \times (\mathbf{H} - \mathbf{G}) = \nabla h$. Since *h* is harmonic, the divergence of ∇h is zero. Thus this equation has a solution in a star-shaped domain. In fact, we can write the solution as

$$\mathbf{H}(\mathbf{R}) - \mathbf{G}(\mathbf{R}) = \int_0^1 t(\nabla h(\mathbf{r})) \times \frac{d\mathbf{r}}{dt} dt,$$

where $\mathbf{r} = t\mathbf{R} + (1-t)\mathbf{R}_0$ and \mathbf{R}_0 is any point you wish with $|\mathbf{R}_0| < 1$, for example, $\mathbf{R}_0 = \mathbf{0}$. Add **G** to both sides to obtain **H**.

8. By the given the fact, we have

$$\int_{C} \mathbf{F}(\mathbf{R}) \cdot d\mathbf{R} = \int_{C_{1}} \mathbf{F}(\mathbf{R}) \cdot d\mathbf{R} + \int_{C_{2}} \mathbf{F}(\mathbf{R}) \cdot d\mathbf{R}, \qquad (1)$$

where we must be careful which directions we traverse C_1 and C_2 .

(a) Now $\mathbf{0} \in C$. Start traversing C_1 from $\mathbf{0}$. If we replace \mathbf{R} with $-\mathbf{R}$, this will cause us to traverse C_2 starting at $\mathbf{0}$. One of these two curves is being traversed in the wrong direction, say C_2 . Thus

$$\int_{C_2} \mathbf{F}(\mathbf{R}) \cdot d\mathbf{R} = -\int_{C_1} \mathbf{F}(-\mathbf{R}) \cdot d(-\mathbf{R})$$

$$= \int_{C_1} \mathbf{F}(-\mathbf{R}) \cdot d\mathbf{R} = -\int_{C_1} \mathbf{F}(\mathbf{R}) \cdot d\mathbf{R},$$
(2)

where the first equality uses the relationship between C_1 and C_2 and the last equality uses the fact that **F** is odd on C. Thus (1) reduces to zero.

(b) Now $\mathbf{0} \notin C$. In this case you should be able to convince yourself that, as \mathbf{R} moves along C_1 , $-\mathbf{R}$ moves along C_2 in the same direction—the points \mathbf{R} and $-\mathbf{R}$ are on opposite sides of the origin. The argument now proceeds as in (a) except that the first $-\int_{C_1}$ in (2) should be \int_{C_1} .