1. Let $\mathbf{C}=\mathbf{A} \times \mathbf{B}$. By the definition of the cross product, \mathbf{C} is perpendicular to \mathbf{A} and $\mathbf{C} \times \mathbf{A}$ is perpendicular to \mathbf{C} and \mathbf{A}. Since the length of a cross product of two perpendicular vectors is the product of their lengths, $|\mathbf{C} \times \mathbf{A}|=|\mathbf{C}||\mathbf{A}|$.
2. Since $\partial \mathbf{R} / \partial u=\cos v \mathbf{i}-\sin v \mathbf{j}-2 u \mathbf{k}$ and $\partial \mathbf{R} / \partial v=-u \sin v \mathbf{i}-u \cos \mathbf{j}$, we have the normal

$$
\mathbf{N}=\frac{\partial \mathbf{R}}{\partial u} \times \frac{\partial \mathbf{R}}{\partial v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos v & -\sin v & -2 u \\
-u \sin v & -u \cos v & 0
\end{array}\right|=-2 u^{2} \cos v \mathbf{i}+2 u^{2} \sin v \mathbf{j}-u \mathbf{k} .
$$

Since $|\mathbf{N}|=\sqrt{4 u^{4} \cos ^{2} v+4 u^{4} \sin ^{2} v+u^{2}}=|u| \sqrt{4 u^{2}+1}$ and $u \geq 0$, the desired answer is

$$
\frac{-\mathbf{N}}{|\mathbf{N}|}=\frac{2 u \cos v \mathbf{i}}{\sqrt{4 u^{2}+1}}-\frac{2 u \sin v \mathbf{j}}{\sqrt{4 u^{2}+1}}+\frac{\mathbf{k}}{\sqrt{4 u^{2}+1}}
$$

3. This is assigned homework problem Section 4.1 number 4.
4. Since div curl is zero, $0=\nabla \cdot(\nabla \times \mathbf{H})=\nabla \cdot(\mathbf{F} \times \mathbf{R})$. Use the identity $\nabla \cdot(\mathbf{F} \times \mathbf{G})=$ $\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G})$ with \mathbf{H} replaced by \mathbf{R} to get

$$
0=\mathbf{R} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{R})=\mathbf{R} \cdot(\nabla \times \mathbf{F})
$$

where the last equality comes from $\nabla \times \mathbf{R}=\mathbf{0}$.
You may know or have on your sheet $\nabla \times \mathbf{R}=\mathbf{0}$, or you could compute $\nabla \times \mathbf{R}$ to get $\mathbf{0}$, or you might note that \mathbf{R} is the gradient of $\left(x^{2}+y^{2}+z^{2}\right) / 2$ and that curl grad is zero.
5. Let V be the region enclosed by S. By the Divergence Theorem

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iiint_{V} \nabla \cdot(\nabla \times \mathbf{F}) d V
$$

which is zero since div curl is zero.
6. By the Divergence Theorem, the integral over the closed surface consisting of S and the disk D in the $x y$-plane with boundary $x^{2}+y^{2}=4$ is zero:

$$
\iint_{S} \mathbf{F}(\mathbf{R}) \cdot \mathbf{n} d S+\iint_{D} \mathbf{F}(\mathbf{R}) \cdot(-\mathbf{k}) d x d y=0
$$

(In the second integral, the normal is $\mathbf{- k}$, not \mathbf{k} since it must point outward.) Rearranging and changing to polar coordinates $(x=r \cos \theta, y=r \sin \theta)$ gives the answer since

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|=r .
$$

Alternatively, since $\nabla \cdot \mathbf{F}=0$ for all \mathbf{R}, we can write $\mathbf{F}=\nabla \times \mathbf{G}$ for some \mathbf{G}. Now Stokes' Theorem tells us that integrating $\nabla \times \mathbf{G} \cdot d \mathbf{S}$ over a surface depends only on the boundary, not the surface. Hence we can change the surface to the interior of $x^{2}+y^{2}=4$ in the $x y$-plane. This gives

$$
\iint_{S} \mathbf{F}(\mathbf{R}) \cdot \mathbf{n} d S=\iint_{D} \mathbf{F}(\mathbf{R}) \cdot \mathbf{k} d x d y
$$

Change coordinates as before.
7. We have

$$
\mathbf{F}=\nabla \phi+\nabla \times \mathbf{G} \quad \text { and } \mathbf{F}=\nabla(\phi-h)+\nabla \times \mathbf{H} .
$$

Equating and rearranging, we have $\nabla \times(\mathbf{H}-\mathbf{G})=\nabla h$. Since h is harmonic, the divergence of ∇h is zero. Thus this equation has a solution in a star-shaped domain. In fact, we can write the solution as

$$
\mathbf{H}(\mathbf{R})-\mathbf{G}(\mathbf{R})=\int_{0}^{1} t(\nabla h(\mathbf{r})) \times \frac{d \mathbf{r}}{d t} d t
$$

where $\mathbf{r}=t \mathbf{R}+(1-t) \mathbf{R}_{0}$ and \mathbf{R}_{0} is any point you wish with $\left|\mathbf{R}_{0}\right|<1$, for example, $\mathbf{R}_{0}=\mathbf{0}$. Add \mathbf{G} to both sides to obtain \mathbf{H}.
8. By the given the fact, we have

$$
\begin{equation*}
\int_{C} \mathbf{F}(\mathbf{R}) \cdot d \mathbf{R}=\int_{C_{1}} \mathbf{F}(\mathbf{R}) \cdot d \mathbf{R}+\int_{C_{2}} \mathbf{F}(\mathbf{R}) \cdot d \mathbf{R}, \tag{1}
\end{equation*}
$$

where we must be careful which directions we traverse C_{1} and C_{2}.
(a) Now $\mathbf{0} \in C$. Start traversing C_{1} from $\mathbf{0}$. If we replace \mathbf{R} with $-\mathbf{R}$, this will cause us to traverse C_{2} starting at $\mathbf{0}$. One of these two curves is being traversed in the wrong direction, say C_{2}. Thus

$$
\begin{align*}
\int_{C_{2}} \mathbf{F}(\mathbf{R}) \cdot d \mathbf{R} & =-\int_{C_{1}} \mathbf{F}(-\mathbf{R}) \cdot d(-\mathbf{R}) \tag{2}\\
& =\int_{C_{1}} \mathbf{F}(-\mathbf{R}) \cdot d \mathbf{R}=-\int_{C_{1}} \mathbf{F}(\mathbf{R}) \cdot d \mathbf{R}
\end{align*}
$$

where the first equality uses the relationship between C_{1} and C_{2} and the last equality uses the fact that \mathbf{F} is odd on C. Thus (1) reduces to zero.
(b) Now $\mathbf{0} \notin C$. In this case you should be able to convince yourself that, as \mathbf{R} moves along $C_{1},-\mathbf{R}$ moves along C_{2} in the same direction - the points \mathbf{R} and $-\mathbf{R}$ are on opposite sides of the origin. The argument now proceeds as in (a) except that the first $-\int_{C_{1}}$ in (2) should be $\int_{C_{1}}$.

