
Math 20E Final Exam Solutions June 2004

1. Let C = A × B. By the definition of the cross product, C is perpendicular to A

and C × A is perpendicular to C and A. Since the length of a cross product of two
perpendicular vectors is the product of their lengths, |C × A| = |C| |A|.

2. Since ∂R/∂u = cos vi − sin vj − 2uk and ∂R/∂v = −u sin vi − u cos j, we have the
normal

N =
∂R
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× ∂R

∂v
=
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= −2u2 cos vi + 2u2 sin vj − uk.

Since |N| =
√

4u4 cos2 v + 4u4 sin2 v + u2 = |u|
√

4u2 + 1 and u ≥ 0, the desired
answer is

−N

|N| =
2u cos vi√
4u2 + 1

− 2u sin vj√
4u2 + 1

+
k√

4u2 + 1
.

3. This is assigned homework problem Section 4.1 number 4.

4. Since div curl is zero, 0 = ∇ · (∇×H) = ∇ · (F×R). Use the identity ∇ · (F×G) =
G · (∇× F) − F · (∇× G) with H replaced by R to get

0 = R · (∇× F) − F · (∇× R) = R · (∇× F),

where the last equality comes from ∇× R = 0.
You may know or have on your sheet ∇×R = 0, or you could compute ∇×R to get
0, or you might note that R is the gradient of (x2 + y2 + z2)/2 and that curl grad is
zero.

5. Let V be the region enclosed by S. By the Divergence Theorem

∫ ∫

S

(∇× F) · dS =

∫ ∫ ∫

V

∇ · (∇× F) dV,

which is zero since div curl is zero.

6. By the Divergence Theorem, the integral over the closed surface consisting of S and
the disk D in the xy-plane with boundary x2 + y2 = 4 is zero:

∫ ∫

S

F(R) · n dS +

∫ ∫

D

F(R) · (−k) dx dy = 0.
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(In the second integral, the normal is −k, not k since it must point outward.) Rear-
ranging and changing to polar coordinates (x = r cos θ, y = r sin θ) gives the answer
since

∂(x, y)

∂(r, θ)
=

∣

∣

∣

∣

cos θ sin θ
−r sin θ r cos θ

∣

∣

∣

∣

= r.

Alternatively, since ∇ · F = 0 for all R, we can write F = ∇ × G for some G. Now
Stokes’ Theorem tells us that integrating ∇× G · dS over a surface depends only on
the boundary, not the surface. Hence we can change the surface to the interior of
x2 + y2 = 4 in the xy-plane. This gives

∫ ∫

S

F(R) · n dS =

∫ ∫

D

F(R) · k dx dy.

Change coordinates as before.

7. We have
F = ∇φ + ∇× G andF = ∇(φ − h) + ∇× H.

Equating and rearranging, we have ∇ × (H − G) = ∇h. Since h is harmonic, the
divergence of ∇h is zero. Thus this equation has a solution in a star-shaped domain.
In fact, we can write the solution as

H(R) − G(R) =

∫

1

0

t(∇h(r)) × dr

dt
dt,

where r = tR + (1 − t)R0 and R0 is any point you wish with |R0| < 1, for example,
R0 = 0. Add G to both sides to obtain H.

8. By the given the fact, we have
∫

C

F(R) · dR =

∫

C1

F(R) · dR +

∫

C2

F(R) · dR, (1)

where we must be careful which directions we traverse C1 and C2.

(a) Now 0 ∈ C. Start traversing C1 from 0. If we replace R with −R, this will cause
us to traverse C2 starting at 0. One of these two curves is being traversed in the
wrong direction, say C2. Thus

∫

C2

F(R) · dR = −
∫

C1

F(−R) · d(−R) (2)

=

∫

C1

F(−R) · dR = −
∫

C1

F(R) · dR,

where the first equality uses the relationship between C1 and C2 and the last
equality uses the fact that F is odd on C. Thus (1) reduces to zero.

(b) Now 0 /∈ C. In this case you should be able to convince yourself that, as R moves
along C1, −R moves along C2 in the same direction—the points R and −R are
on opposite sides of the origin. The argument now proceeds as in (a) except that
the first −

∫

C1

in (2) should be
∫

C1

.


