VERSION A

- PRINT NAME ____
- Write version on your blue book and hand in this exam inside your blue book.
- There are a total of 40 points possible.
- No BOOKS, NOTES or CALCULATORS are allowed.
- You must show your work to receive credit.
- 1. (4 pts.) Fill in the following blanks.
 - (a) If A is an $n \times n$ matrix and there is a matrix B such that _____, we call B the inverse of A.
 - (b) If A and B are matrices such that $a_{ij} = b_{ji}$ for all i and j, we call B _____.

2. (15 pts.) Let
$$A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 2 & 0 & 3 \end{pmatrix}$$
.

- (a) How many solutions does $A\mathbf{x} = (1\ 0\ 0\ 0)^T$ have? Justify your answer.
- (b) How many solutions does $A\mathbf{x} = (0\ 0\ 0\ 1)^T$ have? Justify your answer.
- (c) Either find a **b** so that $A\mathbf{x} = \mathbf{b}$ has exactly one solution or explain why this is impossible.
- 3. (10 pts.) Prove or give a counterexample:
 - (a) If A and B are 2×2 matrices, then AB = BA.
 - (b) For every matrix matrix A, the first entry in AA^T is non-negative. (In other words, if $B = AA^T$, then $b_{11} \ge 0$.)
- 4. (6 pts) Suppose A is an $n \times n$ matrix and A^3 is the matrix of all zeroes. Prove that $(I A)^{-1} = I + A + A^2$.
- 5. (5 pts.) Suppose A = LU is an LU-decomposition of the $n \times n$ matrix A. Recall that in an LU-decomposition L is a lower-triangular with ones on its diagonal and U is an upper triangular matrix. Prove that det $A = u_{11}u_{22}\cdots u_{nn}$, the product of the diagonal entries of U.

END OF EXAM