- PRINT NAME

- Write version on your blue book and

VERSION B hand in this exam inside your blue book.

- There are a total of 40 points possible.
- No BOOKS, NOTES or CALCULATORS are allowed.
- You must show your work to receive credit.

1. (10 pts.) Prove or give a counterexample:
(a) If A and B are 2×2 matrices, then $A B=B A$.
(b) For every matrix matrix A, the first entry in $A^{T} A$ is non-negative. (In other words, if $B=A^{T} A$, then $b_{11} \geq 0$.)
2. (15 pts.) Let $A=\left(\begin{array}{cccc}1 & 1 & -1 & 0 \\ 2 & 2 & 3 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right)$.
(a) How many solutions does $A \mathbf{x}=(0100)^{T}$ have? Justify your answer.
(b) How many solutions does $A \mathbf{x}=(0010)^{T}$ have? Justify your answer.
(c) Either find $\mathbf{a} \mathbf{b}$ so that $A \mathbf{x}=\mathbf{b}$ has exactly one solution or explain why this is impossible.
3. (4 pts.) Fill in the following blanks.
(a) If A is an $n \times n$ matrix and there is a matrix B such that \ldots, we call B the inverse of A.
(b) If A and B are matrices such that $a_{i j}=b_{j i}$ for all i and j, we call $B \ldots$.
4. (6 pts) Suppose A is an $n \times n$ matrix and A^{3} is the matrix of all zeroes. Prove that $(I+A)^{-1}=I-A+A^{2}$.
5. (5 pts.) Suppose $A=L U$ is an $L U$-decomposition of the $n \times n$ matrix A. Recall that in an $L U$-decomposition L is a lower-triangular with ones on its diagonal and U is an upper triangular matrix. Prove that $\operatorname{det} A=u_{11} u_{22} \cdots u_{n n}$, the product of the diagonal entries of U.
