The two versions are nearly the same and problems 1 and 3 have been interchanged. The solutions here are for version A with notes on changes for B.

1. (\#3 in version B) (a) $A B=B A=I$. I mentioned in class that $A B=I$ or $B A=I$ is sufficient, so either " $A B=I$ " and " $B A=I$ " are also acceptable.
(b) transpose
2. There are many ways to convert a matrix to row echelon form. I'll choose one way. Rn means row n. For version A:

$$
\begin{aligned}
\left(\begin{array}{cccc|cc}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & -1 & 0 & 0 \\
2 & 2 & 0 & 3 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{cccc|cc}
1 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
\text { add }(-2) \times(\mathrm{R} 3) \text { to R4 } \\
\text { then switch R2 and R3 }
\end{array} \\
& \rightarrow\left(\begin{array}{cccc|cc}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{c}
\text { subtract R1 from R2 } \\
\text { add }(-5) \times(\mathrm{R} 3) \text { to R4 }
\end{array}
\end{aligned}
$$

Thus (a) has solutions; e.g., $(1-100)^{T}$; however (b) does not have a solution because the last row of the row echelon form augmented matrix is inconsistent.
For version B:

$$
\begin{aligned}
\left(\begin{array}{cccc|cc}
1 & 1 & -1 & 0 & 0 & 0 \\
2 & 2 & 3 & 0 & 1 & 0 \\
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) & \rightarrow\left(\begin{array}{cccc|cc}
1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 1 & 0 \\
0 & -1 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc|cc}
1 & 1 & -1 & 0 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

add $(-2) \times(\mathrm{R} 1)$ to R 2 subtract R1 from R3

Thus (a) has no solutions because the last row of the row echelon form augmented matrix is inconsistent; however, (a) has solutions; e.g., (000-1) $)^{T}$.
(c) $A \mathbf{x}=\mathbf{b}$ has either no solutions or an infinite number because there is a free variable (x_{3} for A and x_{4} for B).
3. (\#1 in version B) (a) False. Example: $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
(b) In version $\mathrm{A},\left(A A^{T}\right)_{11}=a_{11}^{2}+a_{12}^{2}+\cdots+a_{1 n}^{2} \geq 0$ since it is a sum of squares. In version $\mathrm{B},\left(A^{T} A\right)_{11}=a_{11}^{2}+a_{21}^{2}+\cdots+a_{n 1}^{2} \geq 0$.
4. As noted in class, we need only verify either $A B=I$ or $B A=I$ to show that $B=A^{-1}$.

In version $\mathrm{A},(I-A)\left(I+A+A^{2}\right)=I+A+A^{2}-A-A^{2}-A^{3}=I-A^{3}=I$.
In version $\mathrm{B},(I+A)\left(I-A+A^{2}\right)=I-A+A^{2}+A-A^{2}+A^{3}=I+A^{3}=I$.
5. $\operatorname{det}(L U)=\operatorname{det}(L) \operatorname{det}(U)$. The determinant of a triangular matrix is the product of its diagonal entries. Thus $\operatorname{det}(L)=1$ and $\operatorname{det}(U)=u_{11} \cdots u_{n n}$.

