Math 20F

The two versions are nearly the same and problems 1 and 3 have been interchanged. The solutions here are for version A with notes on changes for B.

- 1. (#3 in version B) (a) AB = BA = I. I mentioned in class that AB = I or BA = I is sufficient, so either "AB = I" and "BA = I" are also acceptable.
 - (b) transpose
- 2. There are many ways to convert a matrix to row echelon form. I'll choose one way. Rn means row n. For version A:

$$\begin{pmatrix} 1 & 0 & -1 & 0 & | & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 \\ 1 & 1 & 0 & -1 & | & 0 & 0 \\ 2 & 2 & 0 & 3 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 & | & 1 & 0 \\ 1 & 1 & 0 & -1 & | & 0 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 \\ 0 & 0 & 0 & 5 & | & 0 & 1 \end{pmatrix}$$
 add $(-2) \times (R3)$ to R4 then switch R2 and R3 then switch R2 and R3 $\rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 & | & 1 & 0 \\ 0 & 1 & 1 & -1 & | & -1 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 \\ 0 & 0 & 0 & 0 & | & 0 & 1 \end{pmatrix}$ subtract R1 from R2 add $(-5) \times (R3)$ to R4

Thus (a) has solutions; e.g., $(1 - 1 0 0)^T$; however (b) does not have a solution because the last row of the row echelon form augmented matrix is inconsistent.

For version B:

$$\begin{pmatrix} 1 & 1 & -1 & 0 & | & 0 & 0 \\ 2 & 2 & 3 & 0 & | & 1 & 0 \\ 1 & 0 & 0 & -1 & | & 0 & 1 \\ 0 & 0 & 1 & 0 & | & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 & | & 0 & 0 \\ 0 & 0 & 5 & 0 & | & 1 & 0 \\ 0 & -1 & 1 & -1 & | & 0 & 1 \\ 0 & 0 & 1 & 0 & | & 0 & 0 \end{pmatrix}$$
 add $(-2) \times (R1)$ to R2 subtract R1 from R3

$$\rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 & | & 0 & 0 \\ 0 & -1 & 1 & -1 & | & 0 & 1 \\ 0 & 0 & 1 & 0 & | & 0 & 0 \\ 0 & 0 & 1 & 0 & | & 0 & 0 \\ 0 & 0 & 0 & 0 & | & 1 & 0 \end{pmatrix}$$
 move R2 to end, then add $(-5) \times (R3)$ to R4

Thus (a) has no solutions because the last row of the row echelon form augmented matrix is inconsistent; however, (a) has solutions; e.g., $(0\ 0\ 0\ -1)^T$.

(c) $A\mathbf{x} = \mathbf{b}$ has either no solutions or an infinite number because there is a free variable (x_3 for A and x_4 for B).

3. (#1 in version B) (a) False. Example:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

- (b) In version A, $(AA^T)_{11} = a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2 \ge 0$ since it is a sum of squares. In version B, $(A^TA)_{11} = a_{11}^2 + a_{21}^2 + \dots + a_{n1}^2 \ge 0$.
- 4. As noted in class, we need only verify either AB = I or BA = I to show that $B = A^{-1}$. In version A, $(I - A)(I + A + A^2) = I + A + A^2 - A - A^2 - A^3 = I - A^3 = I$. In version B, $(I + A)(I - A + A^2) = I - A + A^2 + A - A^2 + A^3 = I + A^3 = I$.
- 5. $\det(LU) = \det(L) \det(U)$. The determinant of a triangular matrix is the product of its diagonal entries. Thus $\det(L) = 1$ and $\det(U) = u_{11} \cdots u_{nn}$.